A New Generalized Inverse Rayleigh Geometric distribution with Simulation and Applications in Medicine and Engineering
Abstract
Various limitations are inherent in existing statistical distributions, as explained in the literature when used in modeling the complexities of real-world data. This oftentimes brings about the development of new tractable models. This work introduces the new novel distribution named the Inverse Rayleigh Geometric (IRG) distribution. The IRG distribution boasts significant flexibility with symmetrical and asymmetrical shapes, allowing its Hazard Rate Function (HRF) to be adapted to many failure patterns experienced in various fields such as medicine, biology, and engineering. Some statistical properties of the IRG distribution, such as ordinary and incomplete moments, Quantile Function (QF), stress-strength reliability, weighted moments, order statistics, information measures, and Rényi and Tsallis entropies, are studied. A simulation study was carried out to evaluate the performance of the estimation method used. The IRG distribution proves to be superior to all other models considered in this study by its ability to fit real-life data accurately. Two medical and engineering datasets are applied to demonstrate the exceptional fit of the IRG distribution compared to competing models. The results indicate that the IRG distribution holds promise for reliability evaluations and lifetime data analysis in a variety of academic fields.
Keywords:
Weighted moments, Stress-strength reliability, Tsallis entropy, Inverse Rayleigh distributionReferences
- [1] Trayer, V. N. (1964). Inverse rayleigh (IR) model. Proceedings of the academy of science, doklady akad, nauk belarus, ussr. Izd-vo Akademii nauk BSSR.
- [2] Voda. (1972). On the inverse Rayleigh distributed random variable. Reports of statistical application and research of the union of Japanese scientists and engineers, 19(4), 13–21.
- [3] Gharraph, M. K. (1993). Comparison of estimators of location measures of an inverse Rayleigh distribution. The Egyptian statistical journal, 37(2), 295–309. https://doi.org/10.21608/esju.1993.426926
- [4] Mukherjee, S. P., & Maiti, S. S. (1996). A percentile estimator of the inverse Rayleigh parameter. IAPqR transactions, 21, 63–66.
- [5] Soliman, A., Amin, E. A., & Abd-El Aziz, A. A. (2010). Estimation and prediction from inverse Rayleigh distribution based on lower record values. Applied mathematical sciences, 4(62), 3057–3066. https://m-hikari.com/ams/ams-2010/ams-61-64-2010/aminAMS61-64-2010.pdf
- [6] Almarashi, A. M., Badr, M. M., Elgarhy, M., Jamal, F., & Chesneau, C. (2020). Statistical inference of the half-logistic inverse Rayleigh distribution. Entropy, 22(4). https://doi.org/10.3390/e22040449
- [7] Chiodo, E., & Noia, L. P. Di. (2020). Stochastic extreme wind speed modeling and bayes estimation under the inverse Rayleigh distribution. Applied sciences, 10(16). https://doi.org/10.3390/app10165643
- [8] Chiodo, E., Fantauzzi, M., & Mazzanti, G. (2022). The compound inverse Rayleigh as an extreme wind speed distribution and its bayes estimation. Energies, 15(3). https://doi.org/10.3390/en15030861
- [9] Bakoban, R. A., & Al-Shehri, A. M. (2021). A new generalization of the generalized inverse Rayleigh distribution with applications. Symmetry, 13(4). https://doi.org/10.3390/sym13040711
- [10] Khan, M. S. (2014). Modified inverse Rayleigh distribution. International journal of computer applications, 87(13), 28–33. https://core.ac.uk/download/pdf/33703289.pdf
- [11] Khan, M. S., & King, R. (2015). Transmuted modified inverse Rayleigh distribution. Austrian journal of statistics, 44(3), 17–29. http://dx.doi.org/10.17713/ajs.v44i3.21
- [12] Goual, H., & Yousof, H. M. (2020). Validation of Burr XII inverse Rayleigh model via a modified chi-squared goodness-of-fit test. Journal of applied statistics, 47(3), 393–423. https://doi.org/10.1080/02664763.2019.1639642
- [13] Fatima, K., & Ahmad, S. P. (2017). Weighted inverse Rayleigh distribution. International journal of statistics and systems, 12(1), 119–137. https://b2n.ir/zp9182
- [14] Rao, G. S., & Mbwambo, S. (2019). Exponentiated inverse Rayleigh distribution and an application to coating weights of iron sheets data. Journal of probability and statistics, 2019(1), 7519429. https://doi.org/10.1155/2019/7519429
- [15] Banerjee, P., & Bhunia, S. (2022). Exponential transformed inverse rayleigh distribution: Statistical properties and different methods of estimation. Austrian journal of statistics, 51(4), 60–75. https://doi.org/10.17713/ajs.v51i4.1338
- [16] Marshall, A. W., & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84(3), 641–652. https://doi.org/10.1093/biomet/84.3.641
- [17] Eugene, N., Lee, C., & Famoye, F. (2002). Beta-normal distribution and its applications. Communications in statistics-theory and methods, 31(4), 497–512. https://doi.org/10.1081/STA-120003130
- [18] Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of statistical computation and simulation, 81(7), 883–898. https://doi.org/10.1080/00949650903530745
- [19] Alexander, C., Cordeiro, G. M., Ortega, E. M. M., & Sarabia, J. M. (2012). Generalized beta-generated distributions. Computational statistics & data analysis& data analysis, 56(6), 1880–1897. https://doi.org/10.1016/j.csda.2011.11.015
- [20] Shaw, W. T., & Buckley, I. R. C. (2009). The alchemy of probability distributions: Beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. https://doi.org/10.48550/arXiv.0901.0434
- [21] Elgarhy, M., Arslan Nasir, M., Jamal, F., & Ozel, G. (2018). The type II Topp-Leone generated family of distributions : Properties and applications. Journal of statistics and management systems, 21(8), 1529–1551. https://doi.org/10.1080/09720510.2018.1516725
- [22] Alzaatreh, A., & Ghosh, I. (2015). On the Weibull-X family of distributions. Journal of statistical theory and applications, 14(2), 169–183. https://doi.org/10.2991/jsta.2015.14.2.5
- [23] Tahir, M. H., Cordeiro, G. M., Alizadeh, M., Mansoor, M., Zubair, M., & Hamedani, G. G. (2015). The odd generalized exponential family of distributions with applications. Journal of statistical distributions and applications, 2(1), 1–28. https://doi.org/10.1186/s40488-014-0024-2
- [24] Muhammad, M. (2016). Poisson-odd generalized exponential family of distributions: Theory and applications. Hacettepe journal of mathematics and statistics, 47(6), 1652–1670. https://dergipark.org.tr/en/download/article-file/594135
- [25] Yousof, H. M., Afify, A., Alizadeh, M., Hamedani, G., Amir Jahanshahi, S. M., & Ghosh, D. I. (2018). The Generalized Transmuted Poisson-G Family of Distributions: Theory, Characterizations and Applications. Pakistan journal of statistics and operation research, 14(4), 759–779. https://doi.org/10.18187/pjsor.v14i4.2527
- [26] Chesneau, C., & Jamal, F. (2021). The sine Kumaraswamy-G family of distributions. Journal of mathematical extension, 15(2), 1–33. ttps://doi.org/10.30495/JME.2021.1332
- [27] Al-Babtain, A. A., Elbatal, I., Chesneau, C., & Elgarhy, M. (2020). Sine Topp-Leone-G family of distributions: Theory and applications. Open physics, 18(1), 574–593. https://doi.org/10.1515/phys-2020-0180
- [28] Galton, F. (1883). Inquiries into human faculty and its development. Macmillan. https://B2n.ir/ts3472
- [29] Moors, J. J. A. (1988). A quantile alternative for kurtosis. Journal of the royal statistical society: Series d (the statistician), 37(1), 25–32. https://doi.org/10.2307/2348376
- [30] Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52(1), 479–487. https://doi.org/10.1007/BF01016429
- [31] Ogunde, A. A., Laoye, V. E., Ezichi, O. N., & Balogun, K. O. (2021). Harris extended power Lomax distribution: Properties, inference and applications. International journal of statistics and probability, 10(4), 77–95. https://doi.org/10.5539/ijsp.v10n4p77
- [32] Reyad, H. M., & Othman, S. A. (2017). The beta compound Rayleigh distribution: Properties and applications. Int. j. adv. stat. prob, 5(1), 57–64. https://doi.org/10.14419/ijasp.v5i1.7513
- [33] Merovci, F., Khaleel, M. A., Ibrahim, N. A., & Shitan, M. (2016). The beta Burr type X distribution properties with application. SpringerPlus, 5(1), 697. https://doi.org/10.1186/s40064-016-2271-9
- [34] Bjerkedal, T. (1960). Acquisition of resistance in guinea pies infected with different doses of virulent tubercle bacilli. American journal of hygiene, 72(1), 130–148. https://doi.org/10.5555/19612700619
- [35] Ade Ogunde, A., & Adeniji, O. E. (2022). Type II Topp-Leone Bur XII distribution: Properties and applications to failure time data. Scientific African, 16, e01200. https://doi.org/10.1016/j.sciaf.2022.e01200