A New Generalized Inverse Rayleigh Geometric distribution with Simulation and Applications in Medicine and Engineering

Authors

https://doi.org/10.48314/apem.vi.43

Abstract

Various limitations are inherent in existing statistical distributions, as explained in the literature when used in modeling the complexities of real-world data. This oftentimes brings about the development of new tractable models. This work introduces the new novel distribution named the Inverse Rayleigh Geometric (IRG) distribution. The IRG distribution boasts significant flexibility with symmetrical and asymmetrical shapes, allowing its Hazard Rate Function (HRF) to be adapted to many failure patterns experienced in various fields such as medicine, biology, and engineering. Some statistical properties of the IRG distribution, such as ordinary and incomplete moments, Quantile Function (QF), stress-strength reliability, weighted moments, order statistics, information measures, and Rényi and Tsallis entropies, are studied. A simulation study was carried out to evaluate the performance of the estimation method used. The IRG distribution proves to be superior to all other models considered in this study by its ability to fit real-life data accurately. Two medical and engineering datasets are applied to demonstrate the exceptional fit of the IRG distribution compared to competing models. The results indicate that the IRG distribution holds promise for reliability evaluations and lifetime data analysis in a variety of academic fields.

Keywords:

Weighted moments, Stress-strength reliability, Tsallis entropy, Inverse Rayleigh distribution

References

  1. [1] Trayer, V. N. (1964). Inverse rayleigh (IR) model. Proceedings of the academy of science, doklady akad, nauk belarus, ussr. Izd-vo Akademii nauk BSSR.

  2. [2] Voda. (1972). On the inverse Rayleigh distributed random variable. Reports of statistical application and research of the union of Japanese scientists and engineers, 19(4), 13–21.

  3. [3] Gharraph, M. K. (1993). Comparison of estimators of location measures of an inverse Rayleigh distribution. The Egyptian statistical journal, 37(2), 295–309. https://doi.org/10.21608/esju.1993.426926

  4. [4] Mukherjee, S. P., & Maiti, S. S. (1996). A percentile estimator of the inverse Rayleigh parameter. IAPqR transactions, 21, 63–66.

  5. [5] Soliman, A., Amin, E. A., & Abd-El Aziz, A. A. (2010). Estimation and prediction from inverse Rayleigh distribution based on lower record values. Applied mathematical sciences, 4(62), 3057–3066. https://m-hikari.com/ams/ams-2010/ams-61-64-2010/aminAMS61-64-2010.pdf

  6. [6] Almarashi, A. M., Badr, M. M., Elgarhy, M., Jamal, F., & Chesneau, C. (2020). Statistical inference of the half-logistic inverse Rayleigh distribution. Entropy, 22(4). https://doi.org/10.3390/e22040449

  7. [7] Chiodo, E., & Noia, L. P. Di. (2020). Stochastic extreme wind speed modeling and bayes estimation under the inverse Rayleigh distribution. Applied sciences, 10(16). https://doi.org/10.3390/app10165643

  8. [8] Chiodo, E., Fantauzzi, M., & Mazzanti, G. (2022). The compound inverse Rayleigh as an extreme wind speed distribution and its bayes estimation. Energies, 15(3). https://doi.org/10.3390/en15030861

  9. [9] Bakoban, R. A., & Al-Shehri, A. M. (2021). A new generalization of the generalized inverse Rayleigh distribution with applications. Symmetry, 13(4). https://doi.org/10.3390/sym13040711

  10. [10] Khan, M. S. (2014). Modified inverse Rayleigh distribution. International journal of computer applications, 87(13), 28–33. https://core.ac.uk/download/pdf/33703289.pdf

  11. [11] Khan, M. S., & King, R. (2015). Transmuted modified inverse Rayleigh distribution. Austrian journal of statistics, 44(3), 17–29. http://dx.doi.org/10.17713/ajs.v44i3.21

  12. [12] Goual, H., & Yousof, H. M. (2020). Validation of Burr XII inverse Rayleigh model via a modified chi-squared goodness-of-fit test. Journal of applied statistics, 47(3), 393–423. https://doi.org/10.1080/02664763.2019.1639642

  13. [13] Fatima, K., & Ahmad, S. P. (2017). Weighted inverse Rayleigh distribution. International journal of statistics and systems, 12(1), 119–137. https://b2n.ir/zp9182

  14. [14] Rao, G. S., & Mbwambo, S. (2019). Exponentiated inverse Rayleigh distribution and an application to coating weights of iron sheets data. Journal of probability and statistics, 2019(1), 7519429. https://doi.org/10.1155/2019/7519429

  15. [15] Banerjee, P., & Bhunia, S. (2022). Exponential transformed inverse rayleigh distribution: Statistical properties and different methods of estimation. Austrian journal of statistics, 51(4), 60–75. https://doi.org/10.17713/ajs.v51i4.1338

  16. [16] Marshall, A. W., & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84(3), 641–652. https://doi.org/10.1093/biomet/84.3.641

  17. [17] Eugene, N., Lee, C., & Famoye, F. (2002). Beta-normal distribution and its applications. Communications in statistics-theory and methods, 31(4), 497–512. https://doi.org/10.1081/STA-120003130

  18. [18] Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of statistical computation and simulation, 81(7), 883–898. https://doi.org/10.1080/00949650903530745

  19. [19] Alexander, C., Cordeiro, G. M., Ortega, E. M. M., & Sarabia, J. M. (2012). Generalized beta-generated distributions. Computational statistics & data analysis& data analysis, 56(6), 1880–1897. https://doi.org/10.1016/j.csda.2011.11.015

  20. [20] Shaw, W. T., & Buckley, I. R. C. (2009). The alchemy of probability distributions: Beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. https://doi.org/10.48550/arXiv.0901.0434

  21. [21] Elgarhy, M., Arslan Nasir, M., Jamal, F., & Ozel, G. (2018). The type II Topp-Leone generated family of distributions : Properties and applications. Journal of statistics and management systems, 21(8), 1529–1551. https://doi.org/10.1080/09720510.2018.1516725

  22. [22] Alzaatreh, A., & Ghosh, I. (2015). On the Weibull-X family of distributions. Journal of statistical theory and applications, 14(2), 169–183. https://doi.org/10.2991/jsta.2015.14.2.5

  23. [23] Tahir, M. H., Cordeiro, G. M., Alizadeh, M., Mansoor, M., Zubair, M., & Hamedani, G. G. (2015). The odd generalized exponential family of distributions with applications. Journal of statistical distributions and applications, 2(1), 1–28. https://doi.org/10.1186/s40488-014-0024-2

  24. [24] Muhammad, M. (2016). Poisson-odd generalized exponential family of distributions: Theory and applications. Hacettepe journal of mathematics and statistics, 47(6), 1652–1670. https://dergipark.org.tr/en/download/article-file/594135

  25. [25] Yousof, H. M., Afify, A., Alizadeh, M., Hamedani, G., Amir Jahanshahi, S. M., & Ghosh, D. I. (2018). The Generalized Transmuted Poisson-G Family of Distributions: Theory, Characterizations and Applications. Pakistan journal of statistics and operation research, 14(4), 759–779. https://doi.org/10.18187/pjsor.v14i4.2527

  26. [26] Chesneau, C., & Jamal, F. (2021). The sine Kumaraswamy-G family of distributions. Journal of mathematical extension, 15(2), 1–33. ttps://doi.org/10.30495/JME.2021.1332

  27. [27] Al-Babtain, A. A., Elbatal, I., Chesneau, C., & Elgarhy, M. (2020). Sine Topp-Leone-G family of distributions: Theory and applications. Open physics, 18(1), 574–593. https://doi.org/10.1515/phys-2020-0180

  28. [28] Galton, F. (1883). Inquiries into human faculty and its development. Macmillan. https://B2n.ir/ts3472

  29. [29] Moors, J. J. A. (1988). A quantile alternative for kurtosis. Journal of the royal statistical society: Series d (the statistician), 37(1), 25–32. https://doi.org/10.2307/2348376

  30. [30] Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52(1), 479–487. https://doi.org/10.1007/BF01016429

  31. [31] Ogunde, A. A., Laoye, V. E., Ezichi, O. N., & Balogun, K. O. (2021). Harris extended power Lomax distribution: Properties, inference and applications. International journal of statistics and probability, 10(4), 77–95. https://doi.org/10.5539/ijsp.v10n4p77

  32. [32] Reyad, H. M., & Othman, S. A. (2017). The beta compound Rayleigh distribution: Properties and applications. Int. j. adv. stat. prob, 5(1), 57–64. https://doi.org/10.14419/ijasp.v5i1.7513

  33. [33] Merovci, F., Khaleel, M. A., Ibrahim, N. A., & Shitan, M. (2016). The beta Burr type X distribution properties with application. SpringerPlus, 5(1), 697. https://doi.org/10.1186/s40064-016-2271-9

  34. [34] Bjerkedal, T. (1960). Acquisition of resistance in guinea pies infected with different doses of virulent tubercle bacilli. American journal of hygiene, 72(1), 130–148. https://doi.org/10.5555/19612700619

  35. [35] Ade Ogunde, A., & Adeniji, O. E. (2022). Type II Topp-Leone Bur XII distribution: Properties and applications to failure time data. Scientific African, 16, e01200. https://doi.org/10.1016/j.sciaf.2022.e01200

Published

2025-11-15

How to Cite

Ogunde, A. A., Oseghale, I. O. ., & Adeleye, N. A. . (2025). A New Generalized Inverse Rayleigh Geometric distribution with Simulation and Applications in Medicine and Engineering. Annals of Process Engineering and Management, 2(4), 225-244. https://doi.org/10.48314/apem.vi.43

Similar Articles

1-10 of 22

You may also start an advanced similarity search for this article.