Thermodynamic Simulations of Exergy Efficiency in Organic Rankine Cycle (ORC) Based On Exergy System

Authors

  • Imoh Ime Ekanem Department of Mechanical Engineering Technoloy, Akwa Ibom State Polytechnic, Ikot Osurua, Ikot Ekpene, Nigeria.
  • Enefiok Okon Usungurua Department of Mechanical Engineering, Federal University of Technology, Ikot Abasi, Nigeria.
  • Aniekan Essienubong Ikpe Department of Mechanical Engineering Technoloy, Akwa Ibom State Polytechnic, Ikot Osurua, Ikot Ekpene, Nigeria.

Keywords:

Gasification, Pyrolysis , Combustion , Thermodynamic simulation , Exergy efficiency

Abstract

Exergy analysis in a biomass-powered cycle is vital, especially when involving thermo-chemical conversion technologies like gasification and pyrolysis. These involve complex analyses and have comparative advantages to combustion techniques in power generation. This study conducted a thermodynamic simulation of the exergy efficiency of a novel ORC with turbine bleeding for tri-generation to ascertain the optimal intrinsic values and their real-time boundaries for efficient power output. The study employed a replication method with a developed soft template written source code in Engineering Equation Solver (EES) compared to inconsistent and untactful productivity identified with energy-sapping blue-collar analysis of the system that was invoked hitherto, using three working fluids: ,  and  bounded by environmental and safety standards, and valuable temperatures, pressures and mass flow rates. The results showed that exergy efficiencies for ,  and  were recorded as ,  and  respectively. In contrast, the generic ORC without turbine bleeding with the same configuration had corresponding respective efficiencies of ,  and  which were relatively low, particularly with respect to ORC system without cooling, and having respective efficiency improvement of ,  and  Additionally, the total output power was  for ,  for  and  for  having turbine inlet temperatures spread between  in general. Based on the evaluated thermodynamic properties and their output, especially enthalpy, entropy and exergy destruction,  is given preference, with the highest overall efficiency, followed by  then  in that order. The designed ORC system has the potential for medium temperature relevance with agricultural wastes and for biomass energy utilisation with reduced vent gases compared to most ORC systems used for low-grade heat sources such as geothermal and solar applications, which are wasted as thermal pollution.    

References

‎[1] ‎ Hall, C. A. S., & Klitgaard, K. (2018). Energy and the wealth of nations: an introduction to biophysical ‎economics (Vol. 511), Springer. DOI: 10.1007/978-3-319-66219-0‎

‎[2] ‎ Sayigh, A. (2012). Comprehensive renewable energy. Elsevier.‎

‎[3] ‎ Zabihian, F. (2021). Power plant engineering. CRC Press. DOI: 10.1201/9780429069451‎

‎[4] ‎ Al-Sulaiman, F. A., Dincer, I., & Hamdullahpur, F. (2010). Exergy analysis of an integrated solid oxide ‎fuel cell and organic Rankine cycle for cooling, heating and power production. Journal of power sources, ‎‎195(8), 2346–2354.‎

‎[5] ‎ Ikpe, A. E., Ekanem, I. I., & Usungurua, E. O. (2024). Thermodynamic Analysis and Energy Balance for ‎Environmental Sustainability of Simple Gas Turbine Inlet Cooling System in Afam Power Plant. ‎Computational algorithms and numerical dimensions , 3 (1), 78-93. DOI: 10.22105/cand.2024.463423.1097‎

‎ [6] ‎ Eastop, T. D., & Mc Conkey, A. (1986). Applied thermodynamics for engineering technologies. John Wiley ‎and Sons Inc.‎

‎[7] ‎ Oyedepo, S. O. (2012). Energy and sustainable development in Nigeria: the way forward. Energy, ‎sustainability and society, 2(15), 1–17. DOI:10.1186/2192-0567-2-15‎

‎[8] ‎ Rayner, J. (2008). Basic engineering thermodynamics. Pearson India. https://www.amazon.com/Basic-‎Engineering-Thermodynamics-Rayner-Joel/dp/8131718883‎

‎[9] ‎ Ahmadi, P., Dincer, I., & Rosen, M. A. (2013). Thermodynamic modeling and multi-objective ‎evolutionary-based optimization of a new multigeneration energy system. Energy conversion and ‎management, 76, 282–300. DOI:10.1016/j.enconman.2013.07.049‎

‎[10] ‎ Bombarda, P., Invernizzi, C. M., & Pietra, C. (2010). Heat recovery from Diesel engines: a ‎thermodynamic comparison between Kalina and ORC cycles. Applied thermal engineering, 30(2–3), 212–‎‎219. DOI:10.1016/j.applthermaleng.2009.08.006‎

‎[11] ‎ Muñoz De Escalona, J. M., Sánchez, D., Chacartegui, R., & Sánchez, T. (2012). Part-load analysis of gas ‎turbine & ORC combined cycles. Applied thermal engineering, 36(1), 63–72. ‎DOI:10.1016/j.applthermaleng.2011.11.068‎

‎[12] ‎ Zhang, X., Cao, M., Yang, X., Guo, H., & Wang, J. (2019). Economic analysis of organic Rankine cycle ‎using R123 and R245fa as working fluids and a demonstration project report. Applied sciences ‎‎(Switzerland), 9(2), 288. DOI:10.3390/app9020288‎

‎[13] ‎ Özdemir Küçük, E., & Kılıç, M. (2023). Exergoeconomic analysis and multi-objective optimization of ‎ORC configurations via Taguchi-Grey Relational methods. Heliyon, 9(4). ‎DOI:10.1016/j.heliyon.2023.e15007‎

‎[14] ‎ Sun, J., Liu, Q., & Duan, Y. (2018). Effects of evaporator pinch point temperature difference on thermo-‎economic performance of geothermal organic Rankine cycle systems. Geothermics, 75, 249–258. ‎DOI:10.1016/j.geothermics.2018.06.001‎

‎[15] ‎ Wei, D., Lu, X., Lu, Z., & Gu, J. (2008). Dynamic modeling and simulation of an organic Rankine cycle ‎‎(ORC) system for waste heat recovery. Applied thermal engineering, 28(10), 1216–1224. ‎DOI:10.1016/j.applthermaleng.2007.07.019‎

‎[16] ‎ Li, W., Feng, X., Yu, L. J., & Xu, J. (2011). Effects of evaporating temperature and internal heat ‎exchanger on organic Rankine cycle. Applied thermal engineering, 31(17–18), 4014–4023. ‎DOI:10.1016/j.applthermaleng.2011.08.003‎

‎[17] ‎ Zhang, Z., Yuan, H., Yi, S., Sun, Y., Peng, W., & Mei, N. (2024). Theoretical analysis on temperature-‎lifting cycle for ocean thermal energy conversion. Energy conversion and management, 300, 117946. ‎DOI:10.1016/j.enconman.2023.117946‎

‎[18] ‎ Quoilin, S., Orosz, M., Hemond, H., & Lemort, V. (2011). Performance and design optimization of a ‎low-cost solar organic Rankine cycle for remote power generation. Solar energy, 85(5), 955–966. ‎DOI:10.1016/j.solener.2011.02.010‎

‎[19] ‎ Bao, J. J., Zhao, L., & Zhang, W. Z. (2011). A novel auto-cascade low-temperature solar Rankine cycle ‎system for power generation. Solar energy, 85(11), 2710–2719. DOI:10.1016/j.solener.2011.08.015‎

‎[20] ‎ Jin, Y., Gao, N., & Wang, T. (2020). Influence of heat exchanger pinch point on the control strategy of ‎organic Rankine cycle (ORC). Energy, 207, 118196. DOI:10.1016/j.energy.2020.118196‎

‎[21] ‎ Desai, N. B., & Bandyopadhyay, S. (2009). Process integration of organic Rankine cycle. Energy, 34(10), ‎‎1674–1686. DOI:10.1016/j.energy.2009.04.037‎

‎[22] ‎ Lu, P., Liang, Z., Luo, X., Xia, Y., Wang, J., Chen, K., … & Chen, Y. (2023). Design and optimization of ‎organic Rankine cycle based on heat transfer enhancement and novel heat exchanger: a review. ‎Energies, 16(3), 1380. DOI:10.3390/en16031380‎

‎[23] ‎ Fallah, M., Mahmoudi, S. M. S., Yari, M., & Akbarpour Ghiasi, R. (2016). Advanced exergy analysis of ‎the Kalina cycle applied for low temperature enhanced geothermal system. Energy conversion and ‎management, 108, 190–201. DOI:10.1016/j.enconman.2015.11.017‎

‎[24] ‎ Kotas, T. J. (2012). The exergy method of thermal plant analysis. Paragon Publishing.‎

‎[25] ‎ Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2010). Fundamentals of engineering ‎thermodynamics. John Wiley & Sons.‎

‎[26] ‎ Long, R., Bao, Y. J., Huang, X. M., & Liu, W. (2014). Exergy analysis and working fluid selection of ‎organic Rankine cycle for low grade waste heat recovery. Energy, 73, 475–483. ‎DOI:10.1016/j.energy.2014.06.040‎

‎[27] ‎ Xu, C., Wang, Z., Li, X., & Sun, F. (2011). Energy and exergy analysis of solar power tower plants. ‎Applied thermal engineering, 31(17–18), 3904–3913.‎

‎[28] ‎ Dai, Y., Wang, J., & Gao, L. (2009). Parametric optimization and comparative study of organic Rankine ‎cycle (ORC) for low grade waste heat recovery. Energy conversion and management, 50(3), 576–582. ‎DOI:10.1016/j.enconman.2008.10.018‎

‎[29] ‎ Regulagadda, P., Dincer, I., & Naterer, G. F. (2010). Exergy analysis of a thermal power plant with ‎measured boiler and turbine losses. Applied thermal engineering, 30(8–9), 970–976. ‎DOI:10.1016/j.applthermaleng.2010.01.008‎

‎[30] ‎ Aljundi, I. H. (2009). Energy and exergy analysis of a steam power plant in Jordan. Applied thermal ‎engineering, 29(2–3), 324–328.‎

‎[31] ‎ Sagastume Gutiérrez, A., Cogollos Martínez, J. B., & Vandecasteele, C. (2013). Energy and exergy ‎assessments of a lime shaft kiln. Applied thermal engineering, 51(1–2), 273–280. ‎DOI:10.1016/j.applthermaleng.2012.07.013‎

‎[32] ‎ Rajput, R. K. (2008). Heat and Mass Transfer. Chand (S.) & Co Ltd. https://www.amazon.com/Heat-Mass-‎Transfer-R-K-Rajput/dp/8121926173‎

‎[33] ‎ Cengel, Y. A., Boles, M. A., & Kanoğlu, M. (2011). Thermodynamics: an engineering approach (Vol. 5). ‎McGraw-hill New York.‎

‎[34] ‎ Ikpe, A. E., Iluobe, I. C., & Imonitie, D. I. (2020). Modelling and simulation of high pressure fogging ‎air intake cooling unit of omotosho phase II gas turbine power plant. Journal of applied research on ‎industrial engineering, 7(2), 121–136. http://www.journal-aprie.com/article_106397.html

‎[35] ‎ Kuo, C. R., Hsu, S. W., Chang, K. H., & Wang, C. C. (2011). Analysis of a 50kW organic Rankine cycle ‎system. Energy, 36(10), 5877–5885. DOI:10.1016/j.energy.2011.08.035‎

‎[36] ‎ Hung, T. C. (2001). Waste heat recovery of organic Rankine cycle using dry fluids. Energy conversion ‎and management, 42(5), 539–553. DOI:10.1016/S0196-8904(00)00081-9‎

‎[37] ‎ Tchanche, B. F., Lambrinos, G., Frangoudakis, A., & Papadakis, G. (2011). Low-grade heat conversion ‎into power using organic Rankine cycles - a review of various applications. Renewable and sustainable ‎energy reviews, 15(8), 3963–3979. DOI:10.1016/j.rser.2011.07.024‎

‎[38] ‎ Yamamoto, T., Furuhata, T., Arai, N., & Mori, K. (2001). Design and testing of the organic Rankine ‎cycle. Energy, 26(3), 239–251. DOI:10.1016/S0360-5442(00)00063-3‎

‎[39] ‎ Maizza, V., & Maizza, A. (2001). Unconventional working fluids in organic Rankine-cycles for waste ‎energy recovery systems. Applied thermal engineering, 21(3), 381–390. DOI:10.1016/S1359-4311(00)00044-2‎

‎[40] ‎ Badr, O., O’Callaghan, P. W., & Probert, S. D. (1990). Rankine-cycle systems for harnessing power from ‎low-grade energy sources. Applied energy, 36(4), 263–292. DOI:10.1016/0306-2619(90)90002-U

‎[41] ‎ Chen, H., Goswami, D. Y., & Stefanakos, E. K. (2010). A review of thermodynamic cycles and working ‎fluids for the conversion of low-grade heat. Renewable and sustainable energy reviews, 14(9), 3059–3067. ‎DOI:10.1016/j.rser.2010.07.006‎

‎[42] ‎ Zhao, W., Xie, N., Zhang, W., Yue, J., Wang, L., Bu, X., & Li, H. (2021). Performance characteristics and ‎working fluid selection for high-temperature organic Rankine cycle driven by solar parabolic trough ‎collector. International journal of low-carbon technologies, 16(4), 1135–1149. DOI:10.1093/ijlct/ctab036‎

‎[43] ‎ Soltani, S., Mahmoudi, S. M. S., Yari, M., & Rosen, M. A. (2013). Thermodynamic analyses of an ‎externally fired gas turbine combined cycle integrated with a biomass gasification plant. Energy ‎conversion and management, 70, 107–115. DOI:10.1016/j.enconman.2013.03.002‎

‎[44] ‎ Cohce, M. K., Dincer, I., & Rosen, M. A. (2011). Energy and exergy analyses of a biomass-based ‎hydrogen production system. Bioresource technology, 102(18), 8466–8474.‎

‎[45] ‎ Ahmadi, P., Dincer, I., & Rosen, M. A. (2013). Development and assessment of an integrated biomass-‎based multi-generation energy system. Energy, 56, 155–166. ‎https://doi.org/10.1016/j.energy.2013.04.024‎

‎[46] ‎ Koroneos, C., & Lykidou, S. (2011). Equilibrium modeling for a dwndraft biomass gasifier for cotton ‎stalks biomass in comparison with experimental data. Journal of chemical engineering and materials ‎science, 2(4), 61–68. http://www.academicjournals.org/journal/JCEMS/article-full-text-pdf/36C73921613‎

‎[47] ‎ Nafey, A. S., Sharaf, M. A., & García-Rodríguez, L. (2010). Thermo-economic analysis of a combined ‎solar organic Rankine cycle-reverse osmosis desalination process with different energy recovery ‎configurations. Desalination, 261(1–2), 138–147. DOI:10.1016/j.desal.2010.05.017‎

‎[48] ‎ Zahedi, R., Ahmadi, A., & Dashti, R. (2021). Energy, exergy, exergoeconomic and ‎exergoenvironmental analysis and optimization of quadruple combined solar, biogas, SRC and ORC ‎cycles with methane system. Renewable and sustainable energy reviews, 150, 111420. ‎DOI:10.1016/j.rser.2021.111420‎

‎[49] ‎ Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., & Tassou, S. A. (2018). Waste ‎heat recovery technologies and applications. Thermal science and engineering progress, 6, 268–289. ‎DOI:10.1016/j.tsep.2018.04.017‎

‎[50] ‎ Wang, L., Guo, Y., Liu, K., Wang, C., Che, D., Yang, X., & Sundén, B. (2023). Numerical study on ‎dynamic performance of low temperature recuperator in a S-CO2 Brayton cycle. Numerical heat transfer; ‎part a: applications, 84(12), 1436–1458. DOI:10.1080/10407782.2023.2176382‎

‎[51] ‎ Li, X., Song, J., Yu, G., Liang, Y., Tian, H., Shu, G., & Markides, C. N. (2019). Organic Rankine cycle ‎systems for engine waste-heat recovery: heat exchanger design in space-constrained applications. ‎Energy conversion and management, 199, 111968. DOI:10.1016/j.enconman.2019.111968‎

‎[52] ‎ kaşka, ö. (2014). energy and exergy analysis of an organic rankine for power generation from waste ‎heat recovery in steel industry. energy conversion and management, 77, 108–117. ‎https://doi.org/10.1016/j.enconman.2013.09.026‎

‎[53] ‎ Baroutaji, A., Arjunan, A., Ramadan, M., Robinson, J., Alaswad, A., Abdelkareem, M. A., & Olabi, A. G. ‎‎(2021). Advancements and prospects of thermal management and waste heat recovery of PEMFC. ‎International journal of thermofluids, 9, 100064. DOI:10.1016/j.ijft.2021.100064‎

‎[54] ‎ Poljak, I. (2022). Marine power systems. Journal of marine science and engineering, 10(22), 195. DOI: ‎‎10.3390/jmse10020195‎

‎[55] ‎ Karellas, S., Schuster, A., & Leontaritis, A.-D. (2012). Influence of supercritical ORC parameters on ‎plate heat exchanger design. Applied thermal engineering, 33–34, 70–76. ‎https://doi.org/10.1016/j.applthermaleng.2011.09.013‎

‎[56] ‎ Laouid, Y. A. A., Kezrane, C., Lasbet, Y., & Pesyridis, A. (2021). Towards improvement of waste heat ‎recovery systems: a multi-objective optimization of different organic Rankine cycle configurations. ‎International journal of thermofluids, 11, 100100. DOI:10.1016/j.ijft.2021.100100‎

‎[57] ‎ Mago, P. J., Chamra, L. M., Srinivasan, K., & Somayaji, C. (2008). An examination of regenerative ‎organic Rankine cycles using dry fluids. Applied thermal engineering, 28(8–9), 998–1007. ‎DOI:10.1016/j.applthermaleng.2007.06.025‎

‎[58] ‎ Hajabdollahi, H., Ganjehkaviri, A., & Mohd Jaafar, M. N. (2015). Thermo-economic optimization of ‎RSORC (regenerative solar organic Rankine cycle) considering hourly analysis. Energy, 87, 369–380. ‎DOI:10.1016/j.energy.2015.04.113‎

‎[59] ‎ Wang, X., Rahman, Z. U., Lv, Z., Zhu, Y., Ruan, R., Deng, S., … & Tan, H. (2021). Experimental study ‎and design of biomass co-firing in a full-scale coal-fired furnace with storage pulverizing system. ‎Agronomy, 11(4), 810. DOI:10.3390/AGRONOMY11040810‎

‎[60] ‎ Darvish, K., Ehyaei, M. A., Atabi, F., & Rosen, M. A. (2015). Selection of optimum working fluid for ‎organic rankine cycles by exergy and exergy-economic analyses. Sustainability (Switzerland), 7(11), ‎‎15362–15383. DOI:10.3390/su71115362‎

‎[61] ‎ Roy, J. P., & Misra, A. (2012). Parametric optimization and performance analysis of a regenerative ‎organic Rankine cycle using R-123 for waste heat recovery. Energy, 39(1), 227–235.‎

‎[62] ‎ Imran, M., Park, B. S., Kim, H. J., Lee, D. H., Usman, M., & Heo, M. (2014). Thermo-economic ‎optimization of regenerative organic Rankine cycle for waste heat recovery applications. Energy ‎conversion and management, 87, 107–118. DOI:10.1016/j.enconman.2014.06.091‎

‎[63] ‎ Bernardoni, C., Binotti, M., & Giostri, A. (2019). Techno-economic analysis of closed OTEC cycles for ‎power generation. Renewable energy, 132, 1018–1033. DOI:10.1016/j.renene.2018.08.007‎

‎[64] ‎ Kasaeian, A., Mirjavadi, K., Pourmoghadam, P., Asgari Sima, F., Amirhaeri, Y., Borhani, S., & ‎Fereidooni, L. (2022). Organic Rankine cycles powered by parabolic trough collectors: an overview. ‎Sustainable energy technologies and assessments, 54, 102847. DOI:10.1016/j.seta.2022.102847‎

‎[65] ‎ Siddiqui, M. E., Almatrafi, E., & Saeed, U. (2023). Performance analysis of organic Rankine cycle with ‎internal heat regeneration: comparative study of binary mixtures and pure constituents in warm ‎regions. Processes, 11(8), 2267. DOI:10.3390/pr11082267‎

‎[66] ‎ E Elahi, A., Mahmud, T., Alam, M., Hossain, J., & Biswas, B. N. (2022). Exergy analysis of organic ‎Rankine cycle for waste heat recovery using low GWP refrigerants. International journal of thermofluids, ‎‎16, 100243. DOI:10.1016/j.ijft.2022.100243‎

‎[67] ‎ Hughes, E. E., & Tillman, D. A. (1998). Biomass cofiring: status and prospects 1996. Fuel processing ‎technology, 54(1–3), 127–142. DOI:10.1016/S0378-3820(97)00064-7‎

‎[68] ‎ Balaji, C. (2021). Thermal system design and optimization. Springer. DOI: 10.1007/978-3-030-59046-8‎

‎[69] ‎ Ahmadi, P., Dincer, I., & Rosen, M. A. (2012). Exergo-environmental analysis of an integrated organic ‎Rankine cycle for trigeneration. Energy conversion and management, 64, 447–453. ‎DOI:10.1016/j.enconman.2012.06.001‎

‎[70] ‎ Liu, H., Shao, Y., & Li, J. (2011). A biomass-fired micro-scale CHP system with organic Rankine cycle ‎‎(ORC)-Thermodynamic modelling studies. Biomass and bioenergy, 35(9), 3985–3994. ‎DOI:10.1016/j.biombioe.2011.06.025‎

Published

2024-08-16

How to Cite

Thermodynamic Simulations of Exergy Efficiency in Organic Rankine Cycle (ORC) Based On Exergy System. (2024). Annals of Process Engineering and Management, 1(1), 1-26. https://apem.reapress.com/journal/article/view/18