Thermodynamic Simulations of Exergy Efficiency in Organic Rankine Cycle (ORC) Based on Exergy System
Keywords:
Gasification, Pyrolysis, Combustion, Thermodynamic simulation, Exergy efficiencyAbstract
Exergy analysis in a biomass-powered cycle is vital, especially when involving thermo-chemical conversion technologies like gasification and Pyrolysis. These involve complex analyses and have comparative advantages to combustion techniques in power generation. This study conducted a thermodynamic simulation of the exergy efficiency of a novel Organic Rankine Cycle (ORC) with turbine bleeding for tri-generation to ascertain the optimal intrinsic values and their real-time boundaries for efficient power output. The study employed a replication method with a developed soft template written source code in Engineering Equation Solver (EES) compared to inconsistent and untactful productivity identified with energy-sapping blue-collar analysis of the system that was invoked hitherto, using three working fluids: R245fa, R1234yf and R1234ze bounded by environmental and safety standards, and valuable temperatures, pressures and mass flow rates. The results showed that exergy efficiencies for R1234ze, R245fa and R1234yf were recorded as 29.61%, 28.34% and 22.32% respectively. In contrast, the generic ORC without turbine bleeding with the same configuration had corresponding respective efficiencies of 13.25%, 15.33% and 14.06%, which were relatively low, particularly with respect to ORC system without cooling, and having respective efficiency improvement of 16.36%, 13.0%1 and 8.26%. Additionally, the total output power was 201.0KW for R245fa, 162.5 KW for R1243ze and 131.7 KW for R1234yf having Turbine Inlet Temperatures (TITs) spread between 90-120°C in general. Based on the evaluated thermodynamic properties and their output, especially enthalpy, entropy and exergy destruction, R234fa is given preference, with the highest overall efficiency, followed by 1234ze then 1234fy in that order. The designed ORC system has the potential for medium temperature relevance with agricultural wastes and for biomass energy utilisation with reduced vent gases compared to most ORC systems used for low-grade heat sources such as geothermal and solar applications, which are wasted as thermal pollution.
References
Hall, C. A. S., & Klitgaard, K. (2018). Energy and the wealth of nations: An introduction to biophysical economics. Springer Cham. https://doi.org/10.1007/978-3-319-66219-0
Sayigh, A. (2012). Comprehensive renewable energy. Elsevier. https://B2n.ir/n66421
Zabihian, F. (2021). Power plant engineering. CRC Press. https://doi.org/10.1201/9780429069451
Al-Sulaiman, F. A., Dincer, I., & Hamdullahpur, F. (2010). Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production. Journal of power sources, 195(8), 2346–2354. https://doi.org/10.1016/j.jpowsour.2009.10.075
Safarian, S., & Aramoun, F. (2015). Energy and exergy assessments of modified organic Rankine cycles (ORCs). Energy reports, 1, 1–7. https://doi.org/10.1016/j.egyr.2014.10.003
Eastop, T. D., & Mc Conkey, A. (1986). Applied thermodynamics for engineering technologies. John Wiley and Sons Inc. https://B2n.ir/e82912
Oyedepo, S. O. (2012). Energy and sustainable development in Nigeria: the way forward. Energy, sustainability and society, 2(15), 1–17. https://doi.org/10.1186/2192-0567-2-15
Rayner, J. (2008). Basic engineering thermodynamics. Pearson India. https://B2n.ir/t74137
Ahmadi, P., Dincer, I., & Rosen, M. A. (2013). Thermodynamic modeling and multi-objective evolutionary-based optimization of a new multigeneration energy system. Energy conversion and management, 76, 282–300. https://doi.org/10.1016/j.enconman.2013.07.049
Bombarda, P., Invernizzi, C. M., & Pietra, C. (2010). Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles. Applied thermal engineering, 30(2), 212–219. https://doi.org/10.1016/j.applthermaleng.2009.08.006
Muñoz De Escalona, J. M., Sánchez, D., Chacartegui, R., & Sánchez, T. (2012). Part-load analysis of gas turbine & ORC combined cycles. Applied thermal engineering, 36(1), 63–72. https://doi.org/10.1016/j.applthermaleng.2011.11.068
Zhang, X., Cao, M., Yang, X., Guo, H., & Wang, J. (2019). Economic analysis of organic Rankine cycle using R123 and R245fa as working fluids and a demonstration project report. Applied sciences (Switzerland), 9(2), 288. https://doi.org/10.3390/app9020288
Özdemir Küçük, E., & Kılıç, M. (2023). Exergoeconomic analysis and multi-objective optimization of ORC configurations via Taguchi-Grey Relational methods. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e15007
Sun, J., Liu, Q., & Duan, Y. (2018). Effects of evaporator pinch point temperature difference on thermo-economic performance of geothermal organic Rankine cycle systems. Geothermics, 75, 249–258. https://doi.org/10.1016/j.geothermics.2018.06.001
Wei, D., Lu, X., Lu, Z., & Gu, J. (2008). Dynamic modeling and simulation of an organic Rankine cycle (ORC) system for waste heat recovery. Applied thermal engineering, 28(10), 1216–1224. https://doi.org/10.1016/j.applthermaleng.2007.07.019
Li, W., Feng, X., Yu, L. J., & Xu, J. (2011). Effects of evaporating temperature and internal heat exchanger on organic Rankine cycle. Applied thermal engineering, 31(17), 4014–4023. https://doi.org/10.1016/j.applthermaleng.2011.08.003
Zhang, Z., Yuan, H., Yi, S., Sun, Y., Peng, W., & Mei, N. (2024). Theoretical analysis on temperature-lifting cycle for ocean thermal energy conversion. Energy conversion and management, 300, 117946. https://doi.org/10.1016/j.enconman.2023.117946
Quoilin, S., Orosz, M., Hemond, H., & Lemort, V. (2011). Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation. Solar energy, 85(5), 955–966. https://doi.org/10.1016/j.solener.2011.02.010
Bao, J. J., Zhao, L., & Zhang, W. Z. (2011). A novel auto-cascade low-temperature solar Rankine cycle system for power generation. Solar energy, 85(11), 2710–2719. https://doi.org/10.1016/j.solener.2011.08.015
Jin, Y., Gao, N., & Wang, T. (2020). Influence of heat exchanger pinch point on the control strategy of organic Rankine cycle (ORC). Energy, 207, 118196. https://doi.org/10.1016/j.energy.2020.118196
Desai, N. B., & Bandyopadhyay, S. (2009). Process integration of organic Rankine cycle. Energy, 34(10), 1674–1686. https://doi.org/10.1016/j.energy.2009.04.037
Lu, P., Liang, Zh., Luo, X., Xia, Y., Wang, J., Chen, K., Liang, Y., Chen, J., Yang, Zh., He, J & Chen, Y. (2023). Design and optimization of organic Rankine cycle based on heat transfer enhancement and novel heat exchanger: a review. Energies, 16(3), 1380. https://doi.org/10.3390/en16031380
Fallah, M., Mahmoudi, S. M. S., Yari, M., & Akbarpour Ghiasi, R. (2016). Advanced exergy analysis of the Kalina cycle applied for low temperature enhanced geothermal system. Energy conversion and management, 108, 190–201. https://doi.org/10.1016/j.enconman.2015.11.017
Kotas, T. J. (2012). The exergy method of thermal plant analysis. Paragon publishing.
Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2010). Fundamentals of engineering thermodynamics. John Wiley & Sons. https://B2n.ir/m11094
Long, R., Bao, Y. J., Huang, X. M., & Liu, W. (2014). Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery. Energy, 73, 475–483. https://doi.org/10.1016/j.energy.2014.06.040
Xu, C., Wang, Z., Li, X., & Sun, F. (2011). Energy and exergy analysis of solar power tower plants. Applied thermal engineering, 31(17), 3904–3913. https://doi.org/10.1016/j.applthermaleng.2011.07.038
Dai, Y., Wang, J., & Gao, L. (2009). Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy conversion and management, 50(3), 576–582. https://doi.org/10.1016/j.enconman.2008.10.018
Regulagadda, P., Dincer, I., & Naterer, G. F. (2010). Exergy analysis of a thermal power plant with measured boiler and turbine losses. Applied thermal engineering, 30(8–9), 970–976. https://doi.org/10.1016/j.applthermaleng.2010.01.008
Aljundi, I. H. (2009). Energy and exergy analysis of a steam power plant in Jordan. Applied thermal engineering, 29(2), 324–328. https://doi.org/10.1016/j.applthermaleng.2008.02.029
Gutiérrez, A. S., Martínez, J. B. C., & Vandecasteele, C. (2013). Energy and exergy assessments of a lime shaft kiln. Applied thermal engineering, 51(1), 273–280. https://doi.org/10.1016/j.applthermaleng.2012.07.013
Rajput, R. K. (2008). Heat and Mass Transfer. Chand (S.) & Co Ltd. https://B2n.ir/x61529
Cengel, Y. A., Boles, M. A., & Kanoğlu, M. (2011). Thermodynamics: An engineering approach. McGraw-hill New York.
Ikpe, A. E., Iluobe, I. C., & Imonitie, D. I. (2020). Modelling and simulation of high pressure fogging air intake cooling unit of omotosho phase II gas turbine power plant. Journal of applied research on industrial engineering, 7(2), 121–136. http://www.journal-aprie.com/article_106397.html
Kuo, C. R., Hsu, S. W., Chang, K. H., & Wang, C. C. (2011). Analysis of a 50kW organic Rankine cycle system. Energy, 36(10), 5877–5885. https://doi.org/10.1016/j.energy.2011.08.035
Hung, T. C. (2001). Waste heat recovery of organic Rankine cycle using dry fluids. Energy conversion and management, 42(5), 539–553. https://doi.org/10.1016/S0196-8904(00)00081-9
Tchanche, B. F., Lambrinos, G., Frangoudakis, A., & Papadakis, G. (2011). Low-grade heat conversion into power using organic Rankine cycles - a review of various applications. Renewable and sustainable energy reviews, 15(8), 3963–3979. https://doi.org/10.1016/j.rser.2011.07.024
Yamamoto, T., Furuhata, T., Arai, N., & Mori, K. (2001). Design and testing of the organic Rankine cycle. Energy, 26(3), 239–251. https://doi.org/10.1016/S0360-5442(00)00063-3
Maizza, V., & Maizza, A. (2001). Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems. Applied thermal engineering, 21(3), 381–390. https://doi.org/10.1016/S1359-4311(00)00044-2
Badr, O., O’Callaghan, P. W., & Probert, S. D. (1990). Rankine-cycle systems for harnessing power from low-grade energy sources. Applied energy, 36(4), 263–292. https://doi.org/10.1016/0306-2619(90)90002-U
Chen, H., Goswami, D. Y., & Stefanakos, E. K. (2010). A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and sustainable energy reviews, 14(9), 3059–3067. https://doi.org/10.1016/j.rser.2010.07.006
Zhao, W., Xie, N., Zhang, W., Yue, J., Wang, L., Bu, X., & Li, H. (2021). Performance characteristics and working fluid selection for high-temperature organic Rankine cycle driven by solar parabolic trough collector. International journal of low-carbon technologies, 16(4), 1135–1149. https://doi.org/10.1093/ijlct/ctab036
Soltani, S., Mahmoudi, S. M. S., Yari, M., & Rosen, M. A. (2013). Thermodynamic analyses of an externally fired gas turbine combined cycle integrated with a biomass gasification plant. Energy conversion and management, 70, 107–115. https://doi.org/10.1016/j.enconman.2013.03.002
Cohce, M. K., Dincer, I., & Rosen, M. A. (2011). Energy and exergy analyses of a biomass-based hydrogen production system. Bioresource technology, 102(18), 8466–8474. https://doi.org/10.1016/j.biortech.2011.06.020
Ahmadi, P., Dincer, I., & Rosen, M. A. (2013). Development and assessment of an integrated biomass-based multi-generation energy system. Energy, 56, 155–166. https://doi.org/10.1016/j.energy.2013.04.024
Koroneos, C., & Lykidou, S. (2011). Equilibrium modeling for a dwndraft biomass gasifier for cotton stalks biomass in comparison with experimental data. Journal of chemical engineering and materials science, 2(4), 61–68. https://B2n.ir/m24659
Nafey, A. S., Sharaf, M. A., & García-Rodríguez, L. (2010). Thermo-economic analysis of a combined solar organic Rankine cycle-reverse osmosis desalination process with different energy recovery configurations. Desalination, 261(1), 138–147. https://doi.org/10.1016/j.desal.2010.05.017
Zahedi, R., Ahmadi, A., & Dashti, R. (2021). Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of quadruple combined solar, biogas, SRC and ORC cycles with methane system. Renewable and sustainable energy reviews, 150, 111420. https://doi.org/10.1016/j.rser.2021.111420
Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., & Tassou, S. A. (2018). Waste heat recovery technologies and applications. Thermal science and engineering progress, 6, 268–289. https://doi.org/10.1016/j.tsep.2018.04.017
Wang, L., Guo, Y., Liu, K., Wang, C., Che, D., Yang, X., & Sundén, B. (2023). Numerical study on dynamic performance of low temperature recuperator in a S-CO2 Brayton cycle. Numerical heat transfer; part a: applications, 84(12), 1436–1458. https://doi.org/10.1080/10407782.2023.2176382
Li, X., Song, J., Yu, G., Liang, Y., Tian, H., Shu, G., & Markides, C. N. (2019). Organic Rankine cycle systems for engine waste-heat recovery: heat exchanger design in space-constrained applications. Energy conversion and management, 199, 111968. https://doi.org/10.1016/j.enconman.2019.111968
kaşka, ö. (2014). Energy and exergy analysis of an organic Rankine for power generation from waste heat recovery in steel industry. energy conversion and management, 77, 108–117. https://doi.org/10.1016/j.enconman.2013.09.026
Baroutaji, A., Arjunan, A., Ramadan, M., Robinson, J., Alaswad, A., Abdelkareem, M. A., & Olabi, A. G. (2021). Advancements and prospects of thermal management and waste heat recovery of PEMFC. International journal of thermofluids, 9, 100064. https://doi.org/10.1016/j.ijft.2021.100064
Poljak, I. (2022). Marine power systems. Journal of marine science and engineering, 10(2), 195. https://doi.org/10.3390/jmse10020195
Karellas, S., Schuster, A., & Leontaritis, A. D. (2012). Influence of supercritical ORC parameters on plate heat exchanger design. Applied thermal engineering, 33, 70–76. https://doi.org/10.1016/j.applthermaleng.2011.09.013
Laouid, Y. A. A., Kezrane, C., Lasbet, Y., & Pesyridis, A. (2021). Towards improvement of waste heat recovery systems: A multi-objective optimization of different organic Rankine cycle configurations. International journal of thermofluids, 11, 100100. https://doi.org/10.1016/j.ijft.2021.100100
Mago, P. J., Chamra, L. M., Srinivasan, K., & Somayaji, C. (2008). An examination of regenerative organic Rankine cycles using dry fluids. Applied thermal engineering, 28(8), 998–1007. https://doi.org/10.1016/j.applthermaleng.2007.06.025
Hajabdollahi, H., Ganjehkaviri, A., & Mohd Jaafar, M. N. (2015). Thermo-economic optimization of RSORC (regenerative solar organic Rankine cycle) considering hourly analysis. Energy, 87, 369–380. https://doi.org/10.1016/j.energy.2015.04.113
Wang, X., Rahman, Z. U., Lv, Z., Zhu, Y., Ruan, R., Deng, Sh., Zhang, L., & Tan, H. (2021). Experimental study and design of biomass co-firing in a full-scale coal-fired furnace with storage pulverizing system. Agronomy, 11(4), 810. https://doi.org/10.3390/agronomy11040810
Darvish, K., Ehyaei, M. A., Atabi, F., & Rosen, M. A. (2015). Selection of optimum working fluid for organic Rankine cycles by exergy and exergy-economic analyses. Sustainability (Switzerland), 7(11), 15362–15383. https://doi.org/10.3390/su71115362
Roy, J. P., & Misra, A. (2012). Parametric optimization and performance analysis of a regenerative organic Rankine cycle using R-123 for waste heat recovery. Energy, 39(1), 227–235. https://doi.org/10.1016/j.energy.2012.01.026
Imran, M., Park, B. S., Kim, H. J., Lee, D. H., Usman, M., & Heo, M. (2014). Thermo-economic optimization of regenerative organic Rankine cycle for waste heat recovery applications. Energy conversion and management, 87, 107–118. https://doi.org/10.1016/j.enconman.2014.06.091
Bernardoni, C., Binotti, M., & Giostri, A. (2019). Techno-economic analysis of closed OTEC cycles for power generation. Renewable energy, 132, 1018–1033. https://doi.org/10.1016/j.renene.2018.08.007
Kasaeian, A., Mirjavadi, K., Pourmoghadam, P., Asgari Sima, F., Amirhaeri, Y., Borhani, S., & Fereidooni, L. (2022). Organic Rankine cycles powered by parabolic trough collectors: an overview. Sustainable energy technologies and assessments, 54, 102847. https://doi.org/10.1016/j.seta.2022.102847
Siddiqui, M. E., Almatrafi, E., & Saeed, U. (2023). Performance analysis of organic Rankine cycle with internal heat regeneration: comparative study of binary mixtures and pure constituents in warm regions. Processes, 11(8), 2267. https://doi.org/10.3390/pr11082267
Elahi, A. E., Mahmud, T., Alam, M., Hossain, J., & Biswas, B. N. (2022). Exergy analysis of organic Rankine cycle for waste heat recovery using low GWP refrigerants. International journal of thermofluids, 16, 100243. https://doi.org/10.1016/j.ijft.2022.100243
Hughes, E. E., & Tillman, D. A. (1998). Biomass cofiring: status and prospects 1996. Fuel processing technology, 54(1–3), 127–142. https://doi.org/10.1016/S0378-3820(97)00064-7
Balaji, C. (2021). Thermal system design and optimization. Springer Cham. https://doi.org/10.1007/978-3-030-59046-8
Ahmadi, P., Dincer, I., & Rosen, M. A. (2012). Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration. Energy conversion and management, 64, 447–453. https://doi.org/10.1016/j.enconman.2012.06.001
Liu, H., Shao, Y., & Li, J. (2011). A biomass-fired micro-scale CHP system with organic Rankine cycle (ORC)-thermodynamic modelling studies. Biomass and bioenergy, 35(9), 3985–3994. https://doi.org/10.1016/j.biombioe.2011.06.025