AI-Generated Abstract Expressionism Inspiring Creativity through Ismail A Mageed's Internal Monologues in Poetic Form

Authors

  • Ismail A Mageed * PhD, AIMMA, IEEE, IAENG, School of Computer Science, AI, and Electronics, Faculty of Engineering and Digital Technologies, University of Bradford, United Kingdom. https://orcid.org/0000-0002-3691-0773
  • Abdul Raheem Nazir Department of Computing University, Sheffield Hallam University, United Kingdom.

Keywords:

Artificial intelligence, Abstract expressionism, Poetry, Creative collaboration, Leonardo AI

Abstract

Artificial Intelligence (AI) has revolutionized the creative process, allowing for novel ways of artistic expression. This paper focuses on the intersection of Abstract Expressionism and AI-generated imagery, exploring how poetic prompts inspire unique visual interpretations. By utilizing Leonardo AI with a medium contrast and leveraging the cinematic kino model/preset, the research demonstrates how simple poetic phrases can yield profound visual artworks. The study evaluates the quality, creativity, and emotional resonance of AI-generated art, offering insights into the synergy between human creativity and machine intelligence within an Abstract Expressionism framework. The Leonardo AI is applied to Ismail A Mageed’s Internal Monologues in Poetic Form (IMPFs). The paper ends with some potential open problems and concludes with remarks and future research pathways.

References

Jie, P., Shan, X., & Chung, J. (2023). A comparative analysis between< leonardo. Ai> and< Meshy> as AI texture generation tools. International journal of advanced culture technology, 11(4), 333–339. https://doi.org/10.17703/IJACT.2023.11.4.333

Mezei, P. (2021). From leonardo to the next rembrandt–the need for AI-pessimism in the age of algorithms. UFITA archiv für medienrecht und medienwissenschaft, 84(2), 390–429. https://doi.org/10.5771/2568-9185-2020-2

Kurdi, G., Leo, J., Parsia, B., Sattler, U., & Al-Emari, S. (2020). A systematic review of automatic question generation for educational purposes. International journal of artificial intelligence in education, 30, 121–204. https://doi.org/10.1007/s40593-019-00186-y

Ruiz-Rojas, L. I., Acosta-Vargas, P., De-Moreta-Llovet, J., & Gonzalez-Rodriguez, M. (2023). Empowering education with generative artificial intelligence tools: Approach with an instructional design matrix. Sustainability, 15(15). https://doi.org/10.3390/su151511524

Yildirim, E. (2023). Comparative analysis of leonardo AI, midjourney, and Dall-E: Ai’s perspective on future cities. urbanizm: Journal of urban planning & sustainable development, (28). http://dx.doi.org/10.58225/urbanizm.2023-28-82-96

Bajohr, H. (2024). Operative ekphrasis: The collapse of the text/image distinction in multimodal AI. Word & image, 40(2), 77–90. https://doi.org/10.1080/02666286.2024.2330335

Mikalonytė, E. S., & Kneer, M. (2022). Can Artificial Intelligence make art? Folk intuitions as to whether AI-driven robots can be viewed as artists and produce art. ACM transactions on human-robot interaction (thri), 11(4), 1–19.

Pošćić, A., & Kreković, G. (2020). On the human role in generative art: A case study of AI-driven live coding. Journal of science and technology of the arts, 12(3), 45–62. https://doi.org/10.34632/jsta.2020.9488

Cetinic, E., & She, J. (2022). Understanding and creating art with AI: Review and outlook. ACM transactions on multimedia computing, communications, and applications (TOMM), 18(2), 1–22. https://doi.org/10.1145/3475799

Shen, Y., & Yu, F. (2021). The influence of artificial intelligence on art design in the digital age. Scientific programming, 2021(1), 4838957. https://doi.org/10.1155/2021/4838957

Xu, X. (2024). A fuzzy control algorithm based on artificial intelligence for the fusion of traditional Chinese painting and AI painting. Scientific reports, 14(1), 17846. https://doi.org/10.1038/s41598-024-68375-x

Lehikoinen, K., & Tuittila, S. (2024). Arts‐based approaches for futures workshops: Creating and interpreting artistic futures images. Futures & foresight science, 6(3), e182. https://doi.org/10.1002/ffo2.182

Dang, H., Mecke, L., Lehmann, F., Goller, S., & Buschek, D. (2022). How to prompt? Opportunities and challenges of zero-and few-shot learning for human-AI interaction in creative applications of generative models. ArXiv Preprint ArXiv:2209.01390. https://doi.org/10.48550/arXiv.2209.01390

Wang, M., Liu, Y., Liang, X., Huang, Y., Wang, D., Yang, X., … & Guan, C. (2024). Minstrel: Structural prompt generation with multi-agents coordination for non-AI Experts. ArXiv Preprint ArXiv:2409.13449. https://doi.org/10.48550/arXiv.2409.13449

Kulkarni, N. D., & Tupsakhare, P. (2024). Crafting effective prompts: enhancing ai performance through structured input design. Journal of recent trends in computer science and engineering (JRTCSE), 12(5), 1–10. https://doi.org/10.70589/JRTCSE.2024.5.1

Park, D., An, G., Kamyod, C., & Kim, C. G. (2023). A study on performance improvement of prompt engineering for generative AI with a large language model. Journal of web engineering, 22(8), 1187–1206. https://doi.org/10.13052/jwe1540-9589.2285

Korzynski, P., Mazurek, G., Krzypkowska, P., & Kurasinski, A. (2023). Artificial intelligence prompt engineering as a new digital competence: Analysis of generative AI technologies such as ChatGPT. Entrepreneurial business and economics review, 11(3), 25–37. https://www.ceeol.com/search/article-detail?id=1205908

Noel, G. P. J. C. (2024). Evaluating AI‐powered text‐to‐image generators for anatomical illustration: A comparative study. Anatomical sciences education, 17(5), 979–983. https://doi.org/10.1002/ase.2336

Dogoulis, P., Kordopatis-Zilos, G., Kompatsiaris, I., & Papadopoulos, S. (2023). Improving synthetically generated image detection in cross-concept settings [presentation]. Proceedings of the 2nd acm international workshop on multimedia AI against disinformation (pp. 28–35). https://doi.org/10.1145/3592572.3592846

Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P. S., & Sun, L. (2023). A comprehensive survey of AI-generated content (AIGC): A history of generative AI from gan to chatgpt. ArXiv Preprint ArXiv:2303.04226. https://doi.org/10.48550/arXiv.2303.04226

Ali, O., Murray, P. A., Momin, M., Dwivedi, Y. K., & Malik, T. (2024). The effects of artificial intelligence applications in educational settings: Challenges and strategies. Technological forecasting and social change, 199, 123076. https://doi.org/10.1016/j.techfore.2023.123076

Chen, S.-Y. (2023). Generative AI, learning and new literacies. Journal of educational technology development & exchange, 16(2). https://doi.org/10.18785/jetde.1602.01

Wu, C. C., Song, R., Sakai, T., Cheng, W. F., Xie, X., & Lin, S.-D. (2019). Evaluating image-inspired poetry generation. Natural language processing and chinese computing (pp. 539–551). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-32233-5_42

Köbis, N., & Mossink, L. D. (2021). Artificial intelligence versus Maya Angelou: Experimental evidence that people cannot differentiate AI-generated from human-written poetry. Computers in human behavior, 114, 106553. https://doi.org/10.1016/j.chb.2020.106553

Liu, B., Fu, J., Kato, M. P., & Yoshikawa, M. (2018). Beyond narrative description: Generating poetry from images by multi-adversarial training. Proceedings of the 26th ACM international conference on multimedia (pp. 783–791). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3240508.3240587

Lyu, Y., Wang, X., Lin, R., & Wu, J. (2022). Communication in Human–AI Co-creation: Perceptual analysis of paintings generated by text-to-image system. Applied sciences, 12(22). https://doi.org/10.3390/app122211312

Abu Zaid, R. M. (2024). Poetry between human mindset and generative artificial intelligence: Some relevant applications and implications. Bulletin of the faculty of languages & translation, 27(2), 303–332. https://doi.org/10.21608/bflt.2024.399196

Messer, U. (2024). Co-creating art with generative artificial intelligence: Implications for artworks and artists. Computers in human behavior: artificial humans, 2(1), 100056. https://doi.org/10.1016/j.chbah.2024.100056

Jiang, H. H., Brown, L., Cheng, J., Khan, M., Gupta, A., Workman, D., … & Gebru, T. (2023). AI art and its impact on artists [presentation]. Proceedings of the 2023 aaai/acm conference on AI, ethics, and society (pp. 363–374). https://doi.org/10.1145/3600211.3604681

Hong, J. W., & Curran, N. M. (2019). Artificial intelligence, artists, and art: attitudes toward artwork produced by humans vs. artificial intelligence. ACM transactions on multimedia computing, communications, and applications (TOMM), 15(2s), 1–16. https://dl.acm.org/doi/abs/10.1145/3326337

Lovato, J., Zimmerman, J. W., Smith, I., Dodds, P., & Karson, J. L. (2024). Foregrounding artist opinions: a survey study on transparency, ownership, and fairness in AI generative art. Proceedings of the aaai/acm conference on ai, ethics, and society, 7(1), 905–916. https://doi.org/10.1609/aies.v7i1.31691

Mikalonytundefined, E. S., & Kneer, M. (2022). Can artificial intelligence make art? Folk Intuitions as to whether AI-driven robots can be viewed as artists and produce art. ACM transactions on human-robot interaction, 11(4), 1–19. https://doi.org/10.1609/aies.v7i1.31691

Anscomb, C. (2024). AI: Artistic collaborator? AI & SOCIETY.

Yadav, M., Kumar, M., Sahoo, A., & Rathnasiri, M. S. H. (2025). AI and the evolution of artistic expression: impacts on society and culture. In Transforming cinema with artificial intelligence (pp. 15–36). IGI Global Scientific Publishing. http://dx.doi.org/10.4018/979-8-3693-3916-9.ch002

Hutson, J., & Schnellmann, A. (2023). The poetry of prompts: The collaborative role of generative artificial intelligence in the creation of poetry and the anxiety of machine influence. Global journal of computer science and technology: D, 23(1). https://digitalcommons.lindenwood.edu/faculty-research-papers/462/

Rahmeh, H. (2023). Digital verses versus inked poetry: Exploring readers’ response to AI-generated and human-authored sonnets. Sch int j linguist lit, 6(9), 372–382. http://dx.doi.org/10.36348/sijll.2023.v06i09.002

Raj, M., Berg, J., & Seamans, R. (2023). Art-ificial intelligence: The effect of AI disclosure on evaluations of creative content. ArXiv Preprint ArXiv:2303.06217. https://doi.org/10.48550/arXiv.2303.06217

Shalevska, E. (2024). The digital laureate: Examining AI-generated poetry. RATE Issues, Romanian association of teachers of English. http://dx.doi.org/10.69475/RATEI.2024.1.1

Giannini, T., & Bowen, J. P. (2023). Generative art and computational imagination: integrating poetry and art. Proceedings of eva london 2023 (pp. 211–219). BCS Learning & Development. https://www.scienceopen.com/hosted-document?doi=10.14236/ewic/EVA2023.37

Stiles, S. (2023). Ars autopoetica: On authorial intelligence, generative literature, and the future of language. In choreomata (pp. 357–378). Chapman and Hall/CRC.

Grassini, S., & Koivisto, M. (2024). Artificial creativity? Evaluating AI against human performance in creative interpretation of visual stimuli. International journal of human–computer interaction, 1–12. https://doi.org/10.1080/10447318.2024.2345430

Chen, L., Xiao, S., Chen, Y., Sun, L., Childs, P. R. N., & Han, J. (2023). An artificial intelligence approach for interpreting creative combinational designs. Journal of engineering design, 1–28. https://doi.org/10.1080/09544828.2024.2377068

Grilli, L., & Pedota, M. (2024). Creativity and artificial intelligence: A multilevel perspective. Creativity and innovation management, 33(2), 234–247. https://doi.org/10.1111/caim.12580

Al-Zahrani, A. M. (2024). Balancing act: Exploring the interplay between human judgment and artificial intelligence in problem-solving, creativity, and decision-making. Igmin research, 2(3), 145–158. https://www.igminresearch.com/articles/html/igmin158

Qamar, M. T., Yasmeen, J., Pathak, S. K., Sohail, S. S., Madsen, D. O., & Rangarajan, M. (2024). Big claims, low outcomes: fact checking ChatGPT’s efficacy in handling linguistic creativity and ambiguity. Cogent arts & humanities, 11(1), 2353984. https://doi.org/10.1080/23311983.2024.2353984

Gilchrist, B. (2022). Poetics of artificial intelligence in art practice:(Mis) apprehended bodies remixed as language.

da Silva, R. S. R., & de Carvalho, A. C. B. (2024). The creation of mathematical poems and song lyrics by (pre-service) teachers-with-AI as an aesthetic experience. Journal of digital life and learning, 4(1), 43–63. https://doi.org/10.51357/jdll.v4i1.279

Guo, A., Sathyanarayanan, S., Wang, L., Heer, J., & Zhang, A. (2024). From pen to prompt: How creative writers integrate AI into their writing practice. ArXiv Preprint ArXiv:2411.03137. https://doi.org/10.48550/arXiv.2411.03137

Strineholm, P. (2021). Exploring human-robot interaction through explainable AI poetry generation.

Chandrashekar, K., & Jangampet, V. D. (2021). Enhancing generative AI precision: Adaptive prompt reinforcement learning for high-fidelity applications. International journal of computer engineering and technology (IJCET), 12(1), 81–90. https://iaeme.com/Home/issue/IJCET?Volume=12&Issue=1

Oppenlaender, J., Linder, R., & Silvennoinen, J. (2024). Prompting AI art: An investigation into the creative skill of prompt engineering. International journal of human–computer interaction, 1–23. https://doi.org/10.1080/10447318.2024.2431761

Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., & Aberman, K. (2023). Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation [presentation]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 22500–22510).

Nur, M. D. M., & Hartati, H. (2024). Utilization of leonardo ai in developing teaching materials for islamic religious education students: case study at ftik uin datokarama palu [presentation]. Proceeding of international conference on islamic and interdisciplinary studies (Vol. 3, pp. 302–306). https://jurnal.uindatokarama.ac.id/index.php/iciis/article/view/3525

Po, R., Yifan, W., Golyanik, V., Aberman, K., Barron, J. T., Bermano, A., … & Wetzstein, G. (2024). State of the Art on Diffusion Models for Visual Computing. Computer graphics forum, 43(2), e15063. https://doi.org/10.1111/cgf.15063

Published

2024-12-28

How to Cite

AI-Generated Abstract Expressionism Inspiring Creativity through Ismail A Mageed’s Internal Monologues in Poetic Form. (2024). Annals of Process Engineering and Management, 1(1), 33-85. https://apem.reapress.com/journal/article/view/21