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1|Introduction    

Treyer [1] introduced and developed the Inverse Rayleigh (IR) distribution as a model for analyzing reliability 

data. Voda [2] carried out an in-depth study on the model and discovered that the IR distribution is commonly 

used in reliability research and engineering, and it can be used to approximate different experimental units of 

lifespan distributions. Gharraph [3] derived five key measures of location for the IR distribution and used 
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  various estimation methods to estimate the unknown parameter of this distribution. Further, He performed 

a numerical comparison of different estimating methods, concentrating on their bias and Root-Mean-Squared 

Error (RMSE), in order to assess the effectiveness and suitability of the recommended approach. Mukherjee 

and Maiti [4] proposed and studied the percentile estimator for the scale parameter λ of the one-parameter 

IR distribution and examined its asymptotic efficiency. In their study, Soliman et al. [5]  examined both non-

Bayesian and Bayesian problems pertaining to parameter estimation in the IR model. 

Almarashi et al. [6] addressed issues with the IR distribution's two-parameter extension by utilizing the half 

logistic family to simulate somewhat positively-skewed or nearly symmetrical real-world data. The IR 

probability distribution is offered by Chiodo and Noia [7] as an alternate distribution for simulating extremely 

high wind speeds, which is essential for both mechanical safety evaluation and wind power generation. 

Importantly for wind power generation and turbine safety assessment, Chiodo et al. [8] further introduced 

the compound IR distribution as a model built for severe wind speeds. Bakoban and Al-Shehri [9] looked at 

the four-parameter lifetime model known as the beta inverse generalized IR distribution. They conducted a 

thorough analysis of the model's characteristics and applicability. 

Further, several authors have also created and researched generalizations of the IR distribution with the goal 

of expanding its range of use in real-world data modeling. Such works include: Khan [10] developed the 

modified IR distribution and discussed its statistical properties. Khan and King [11] proposed and studied the 

transmuted modified IR distribution utilizing the Quadratic Rank Transmutation Map (QRTM). The Burr 

XII IR model was introduced by Goual and Yousof [12]. Fatima and Ahmad [13] developed the Weighted IR 

distribution. They carried out a detailed study of its statistical properties, which immensely contributes to the 

understanding and application of weighted distribution models in statistical analysis and applications. 

Exponentiated IR distribution features were investigated by Rao and Mbwambo [14], providing a versatile 

method for lifetime data analysis. The exponential transformed IR distribution was developed by Banerjee 

and Bhunia [15] . 

The development of new distributions usually entails the addition of one or more parameters to baseline 

distributions to enhance their applicability to model complex phenomena across various fields of life. Several 

authors have been motivated by this technique and have proposed different methods for generating new 

distributions. These include the Marshall and Olkin families of distribution developed by Marshall and Olkin 

[16]. The Beta Generalized distribution proposed by Eugene et al. [17], the Kumaraswamy Generalized 

distribution by Cordeiro and Castro [18], the McDonald Generalized distribution by Alexander et al. [19],  

and Shaw and Buckley [20] developed the transmuted Generalized families of distributions. Type II Topp-

Leone generalized distribution was studied by Eligahy et al. [21], Alzaatreh and Ghosh [22] developed the 

Weibull X generalized distributions, the odd-generalized exponential-G was proposed by Tahir et al. [23], and 

Poisson odd-generalized exponential-G by Muhammad [24]. The Transmuted Generalized Poisson 

distribution by Yousof et al. [25], Sin Kumaraswamy generalized distribution, and Sin Topp-Leone generalized 

distribution were respectively studied by Jamal and Chesneau [26] and Al-Babtain et al [27] among several 

others. This work focuses on extending the one-parameter IR distribution to address the problem of 

monotone failure rate embedded in the IR distribution, which makes it inappropriate for use in modeling 

real-life data with a non-monotone hazard failure rate due to a problem associated with its tail weight. 

1.1|Motivation of Study 

The chief motivation of this article is to develop a new generalization of the IR distribution called the Inverse 

Rayleigh Geometric (IRG) distribution. The relevance of the IRG distribution and its desirable properties 

include the following:  

I. The density and Hazard Rate Functions (HRFs)' features and application of the IRG model will be enhanced, 

which will also better represent the behavior of a number of real-world occurrences. There are other forms 

that the HRF of the IRG distribution might take, such as increasing, decreasing, and inverted bathtub failure 
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  rate. The density can take symmetrical and asymmetrical shapes. This will enable the IRG model to fit a wide 

range of data from the engineering, medicine, and reliability fields. 

II. The IRG introduces new generalizations of the IR distribution by adding a new parameter, thus increasing its 

flexibility and improving its ability to characterize tail shapes more accurately as observed from the different 

shapes of the IRG density and hazard functions. Therefore, this generalization will help the IR's inability to 

fit real-world data that possesses a non-monotone failure rate. 

III. The Cumulative Distribution Function (CDF) and HRFs, moments, and entropy of the IRG are in closed 

forms, which are helpful in analyzing complete and censored data. 

The rest of the paper is organized as follows: we derived an expression for the distribution and density 

functions, reliability properties, expansions of the Probability Density Function (PDF), Quantile Function 

(QF), and mode, and also studied the nature of Skewness and Kurtosis of the new distribution in Section 2. 

In Section 3, some statistical properties of the IRG distribution are examined. The maximum likelihood 

method used in estimating the parameters of the IRG model in Section 4 is presented to estimate the model 

parameters. A simulation study is performed in Section 5. In Section 6, we illustrate the flexibility of the new 

model using two real data sets. Some concluding remarks are offered in Section 7. 

2|Methodology 

 If there exists Q functional component of a system working in series and operating independently from each 

other. Suppose each component failure time is denoted by Z1, … . , ZQ and the system stops functioning when 

one of the components fails. Suppose the failure time of the components Z follows the IR distribution with 

CDF represented by 

 

The associated PDF to Eq. (1) is  

 

And Q is a discrete random variable having a geometric distribution with probability function p(n; p) = (1 −

p)pn−1 for nϵΝ and pϵ(0,1). Let X = min{zi}i=1
N . The marginal PDF of X is 

 

The corresponding CDF is  

Where ρ is the scale parameter and v is a shape parameter. The functional reliability properties of the IRG 

distribution are presented below. The Survival Function (SF), HRF, Cumulative Hazard Rate Function 

(CHRF), and the Reversed Hazard Rate Function (RHRF) are given, respectively, by 

G(x; ρ) = exp (−
ρ

x2
) ,         x > 0; ρ > 0. (1) 

g(x; ρ) =
2ρ

x3
exp (−

ρ

x2
) ,         x > 0; ρ > 0.  (2) 

f(x; ρ, v) = (1 − v)
2ρ

x3
exp (−

ρ

x2
) [1 − v (1 − exp (−

ρ

x2
))]

−2

.   (3) 

F(x; ρ, v) =
exp (−

ρ
x2)

[1 − v (1 − exp (−
ρ
x2))]

.     (4) 
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And 

Figs. 1-5 show the variability in the shapes of the CDF, PDF, S(x), and h(x) for the IRG distribution. From Fig. 

1, it can be concluded that the distribution function of the IRG function has a proper density function. Fig. 

2 and Fig. 3 show that the PDF of the IRG distribution displays shapes with increasing, decreasing, and 

unimodal patterns. From Fig. 4, we observe that as time increases, the survival probability approaches zero, 

that is, it decreases. Fig. 5 demonstrates that the HRF of the IRG distribution showcases patterns marked 

with increasing, decreasing, and inverted bathtub failure rate. 

Fig. 1. The cumulative distribution functions of the inverse Rayleigh geometric distribution. 

Fig. 2. The probability density functions of the inverse Rayleigh geometric distribution. 

 

 

s(x; ρ, v) = 1 −
exp (−

ρ
x2)

[1 − v (1 − exp (−
ρ
x2))]

.    (5) 

h(x; ρ, v) =
(1 − v)

2ρ
x3 exp (−

ρ
x2) [1 − v (1 − exp (−

ρ
x2))]

−1

1 − v + (v − 1)exp (−
ρ
x2)

.    (6) 

ϛ(x; ρ, v) =
(1 − v)

2ρ
x3

[1 − v (1 − exp (−
ρ
x2))]

.  (7) 

H(x; ρ, v) = (−
ρ

x2
) + log [1 − v (1 − exp (−

ρ

x2
))],  (8) 
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a. 

b. 

Fig. 3. The probability density functions of the inverse Rayleigh geometric distribution; a. density 

function of inverse Rayleigh geometric distribution, v=0.6 and b. density function of inverse 

Rayleigh geometric distribution, v=0.2. 

 

Fig. 4. The survival function of inverse Rayleigh geometric distribution. 
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a. 

b. 

Fig. 5. The hazard rate function of the inverse Rayleigh geometric distribution; 

a. Hazard function of inverse Rayleigh geometric distribution, v=0.6 and b. 

Hazard function of inverse Rayleigh geometric distribution, v=0.2. 

 

2.1|Expansion of the Density Function  

In this subsection, we can write the Generalized IR distribution as an infinite mixture of the IR distribution. 

If |m|  <  1, u >  0, and w >  0, we have the series representation 

And 

 

Expanding [1 − v (1 − exp (−
ρ

x2
))]

−2

using Eq. (9) and Eq. (10), finally, we have 

(1 − m)−u = ∑ (
u + i − 1

i
)

∞

i=0

mi. (9) 

(1 − m)f−1 = ∑(−1)i (
f − 1

i
)

∞

i=0

mi.  (10) 
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where, 

And f(x; (j + 1)ρ) denotes the IR density function with parameter (j + 1)ρ. Thus, the IRG density function 

can be written as an infinite linear combination of IR densities, and then some of its basic mathematical and 

statistical properties can be derived from IR properties. 

2.2|Quantile of Inverse Rayleigh Geometric Distribution 

The inverse of the CDF in Eq. (4) gives the QF of the IRG distribution as 

The expression given Eq. (12) is very useful to generate IRG random variates, which can easily be implemented 

using software. In particular, an expression for the median (M) of X is Q (0.5) given by 

 

2.3|Mode 

For a continuous random variable with PDF f(x), the mode is defined as the value at which f(x) reaches its 

maximum value. The mode of the inverse generalized Rayleigh distribution can be estimated by finding a 

solution to the equation 
∂y

∂x
(log[f(x; ρ, v]) = 0. 

2.4|Skewness and Kurtosis Based on the Quantile Function 

Now we consider the analytical expression for Skewness and Kurtosis of the IRG distribution by using the 

QF given in Eq. (13). Suppose Q(u) = Q(u; ϕ) with uϵ(0,1). Thus, we consider the Galton coefficient of 

Skewness (SK) by Galton [28] and the coefficient of Kurtosis (KK) by Moors [29], respectively, designed 

using the QF. The Galton’s Skewness and Moors’ Kurtosis are defined by 

respectively. Here, GSK measures the degree of asymmetry of the IRG distribution, and MK measures the 

degree of its tail heaviness; as the value of MK increases, the tail of the IRG distribution becomes heavier. 

Tables 1-3 displays some basic characteristics of the IRG model. From Table 1 and Table 2, it can be deduced 

that increasing the values of the parameter ρ while keeping the value of parameter v constant will lead to an 

increase in the values of the Lower quartile (Q1
4⁄ ), middle quartile (Q1

2⁄ ), and the upper quartile (Q3
4⁄ ) while 

keeping the values of the Galton Skewness and Moors Kurtosis constant. Table 3 shows that varying the 

values of parameters ρ and v will cause the values of the Galton coefficient of Skewness and Moors coefficient 

of Kurtosis to increase and decrease as the values become larger. 

 

f(x; ρ, v) = 2(1 − v)ρ ∑ vi(−1)j (
i + 1

i
) (

j

i
) x−3e

−(j+1)
ρ

x2

∞

i=j=0

 = ∑ γj

∞

i=0

f(x; (j + 1)ρ), (11) 

γj = 2(1 − v)ρ ∑ vi(−1)j (
i + 1

i
) (

j

i
)

∞

i=j=0

.  

Q(u) = [−
1

ρ
(log [

u(1 − v)

(1 − uv)
])]

−1
2⁄

,         uϵ(0,1) . (12) 

M = Q(0.5) = [−
1

ρ
(log [

0.5(1 − v)

(1 − 0.5v)
])]

−1
2⁄

.   (13) 

∂y

∂x
(log[f(x; ρ, v]) = −

3

x
+

2ρ

x3
+

4vexp (−
ρ
x2)

x3 [1 − v (1 − exp (−
ρ
x2))]

= 0.  

GSK =
Q3

4⁄ − 2Q1
2⁄ + Q1

4⁄

Q3
4⁄ − Q1

4⁄

,       MK =
Q7

8⁄ − Q5
8⁄ + Q3

8⁄ − Q1
8⁄

Q6
8⁄ − Q2

8⁄

,  
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  Table 1. Quartiles, Skewness of inverse Rayleigh geometric distribution for 𝐯 = 𝟎. 𝟐. 

 

 

 

 

 

 

Table 2. Quartiles, Skewness of inverse Rayleigh geometric distribution for 𝐯 = 𝟎. 𝟖. 

 

 

 

 

 

 

Table 3. Quartiles, Skewness of inverse Rayleigh geometric distribution. 

 

 

 

 

 

 

 

3|Moments and Incomplete Moments of Inverse Rayleigh 

Geometric Distribution 

Theorem 1. Let X be a random variable following an IRG distribution with shape parameters v and ρ. The 

rth moment about the origin of X, represented by E(Xr), gives as: 

Proof: 

Letting z = (j + 1)
ρ

x2, x = z
−1

2⁄ (j + 1)
1

2⁄ ρ
1

2⁄ , dx = −1
2⁄ z

−3
2⁄ (j + 1)

1
2⁄ ρ

1
2⁄ , inserting it in Eq. (15), we obtain 

 𝐐𝟏
𝟒⁄  𝐐𝟏

𝟐⁄  𝐐𝟑
𝟒⁄  𝐐𝟏

𝟖⁄  𝐐𝟑
𝟖⁄  𝐐𝟓

𝟖⁄  𝐐𝟕
𝟖⁄  𝐆𝐒𝐊 𝐌𝐊 

ρ =0.5 0.5665 0.7852 1.1981 0.4686 0.6664 0.9452 1.7445 0.3074 1.5784 

ρ =1.5 0.9812 1.3601 2.0752 0.8116 1.1542 1.6372 3.0215 0.3074 1.5784 

ρ =5 1.7914 2.4831 3.7888 1.4818 2.1078 2.9891 5.5164 0.3074 1.5784 

ρ =10 2.5334 3.5116 5.3582 2.0955 2.9801 4.2272 7.8014 0.3074 1.5784 

ρ =20 3.5827 4.9662 7.5776 2.96353 4.2145 5.9782 11.0330 0.3074 1.5784 

ρ =30 4.3879 6.08 9.2807 3.6296 5.1617 7.3218 13.5126 0.3074 1.5784 

 𝐐𝟏
𝟒⁄  𝐐𝟏

𝟐⁄  𝐐𝟑
𝟒⁄  𝐐𝟏

𝟖⁄  𝐐𝟑
𝟖⁄  𝐐𝟓

𝟖⁄  𝐐𝟕
𝟖⁄  𝐆𝐒𝐊 𝐌𝐊 

ρ=0.5 0.4247 0.5282 0.7140 0.3735 0.4731 0.6006 0.9632 0.2839 1.5975 

ρ=1.5 0.7355 0.9150 1.2367 0.6469 0.8195 10402 1.6682 0.2839 1.5975 

ρ =5 1.3429 1.6705 2.2578 1.1812 1.4962 1.8991 3.0457 0.2839 1.5975 

ρ=10 1.8991 2.3624 3.1930 1.6705 2.1159 2.6858 4.3073 0.2839 1.5975 

ρ=20 2.6858 3.3410 4.5156 2.3624 2.9924 3.7983 6.0915 0.2839 1.5975 

ρ=30 3.2894 4.0919 5.5305 2.8934 3.6649 4.6519 7.4605 0.2839 1.5675 

 𝐐𝟏
𝟒⁄  𝐐𝟏

𝟐⁄  𝐐𝟑
𝟒⁄  𝐐𝟏

𝟖⁄  𝐐𝟑
𝟖⁄  𝐐𝟓

𝟖⁄  𝐐𝟕
𝟖⁄  𝐆𝐒𝐊 𝐌𝐊 

ρ = 10 

v = 0.1 

2.6115 3.6583 5.6336 2.1456 3.0891 4.4245 8.2388 0.3072 1.5742 

ρ = 15 

v = 0.4 

3.9107 3.9107 5.8266 2.4306 3.3594 4.6519 8.3805 0.3064 1.5878 

ρ = 25 

v = 0.5 

3.5843 4.7703 6.9957 3.0384 4.1291 5.6309 9.9738 0.3047 1.5928 

ρ = 30 

v = 0.6 

3.7441 4.8936 7.0351 3.2065 4.2741 5.7220 9.9115 0.3015 1.5974 

ρ = 40 

v = 0.7 

4.0843 5.2229 7.3166 3.5401 4.6123 6.0340 10.1343 0.2955 1.6003 

ρ = 50 

v = 0.9 

3.8158 4.5664 5.8394 3.4249 4.1727 5.0690 7.5067 0.2582 1.5742 

E(Xr) = μr
′ = (1 − v) ∑ (i + 1)(−1)jvi(j + 1)

r
2⁄ −1 (

j

i
) ρ

r
2⁄ Γ(1 − r

2⁄ )

∞

i=j=0

, r < 2.  (14) 

E(Xr) = ∫ xrf(x; ϕ)

∞

0

dx = 2ρ ∑ vi(−1)j(1 − v) (
i + 1

i
) (

j

i
)

∞

2i=j=0

∫ xr−3e
−(j+1)

ρ
x2

∞

−∞

dx, (15) 
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where Γ(m) = ∫ um−1e−udu
∞

0
 is the complementary incomplete gamma function. The mean of IRG can be 

obtained by substituting r = 1 in Eq. (17), and is given as 

The qth central moment (Mq) and cumulants (𝓀q) of X, are respectively, given by 

and  

where 𝓀1 = μ1
′ .  

Theorem 2. If X ∼ IRG, then an expression for the Moment Generating Function (MGF) of X is given as 

 

Proof: From the well-known definition of the MGF given by 

Substituting Eq. (17) in Eq. (19) for μr
′ , we obtain the MGF of the IRG distribution as 

The rth lower incomplete moments of X are defined by 

 

Inserting Eq. (3) in Eq. (20), we obtain 

Letting z = (j + 1)
ρ

x2, x = z
−1

2⁄ (j + 1)
1

2⁄ ρ
1

2⁄ , dx = −1
2⁄ z

−3
2⁄ (j + 1)

1
2⁄ ρ

1
2⁄ , inserting it in Eq. (21), we obtain 

 

E(Xr) = μr
′ = (1 − v) ∑ (i + 1)vi(−1)j(j + 1)

r
2⁄ −1 (

j

i
) ρ

r
2⁄

∞

2i=j=0

∫ z−r
2⁄ e−z

∞

0

dz.  (16) 

μr
′ = (1 − v) ∑ (i + 1)(−1)jvi(j + 1)

r
2⁄ −1 (

j

i
) ρ

r
2⁄ Γ(1 − r

2⁄ )

∞

i=j=0

, r < 2, (17) 

mean =  μ = (1 − v) ∑ (i + 1)(−1)jvi(j + 1)−1
2⁄ (

j

i
) ρ

1
2⁄ Γ(1

2⁄ )

∞

i=j=0

.  (18) 

Mq = E(X − μq
′ )

q
= ∑ (

q − 1

p − 1
) 𝓀rμq−r,

′

q−1

p=0

  

𝓀r = μr
′ − ∑ (

q − 1

p − 1
) 𝓀rμq−r,

′

q−1

p=0

  

Mx(t) = (1 − v) ∑
tr

r!
(i + 1)(−1)jvi(j + 1)

r
2⁄ −1 (

j

i
) ρ

r
2⁄ Γ(1 − r

2⁄ )

∞

i=j=0

.  

Mx(t) = E(etX) = ∑
tr

r!

∞

r=0

∫ xrf(x)dx

∞

−∞

= ∑
tr

r!

∞

r=0

μr
′ .  

Mx(t) = (1 − v) ∑
tr

r!
(i + 1)(−1)jvi(j + 1)

r
2⁄ −1 (

j

i
) ρ

r
2⁄ Γ(1 − r

2⁄ )

∞

i=j=0

.  

Лr(t) = ∫ xrf(x; ϕ)

t

−∞

dx. (20) 

Лr(t) = 2ρ ∑ vi(−1)j(1 − v) (
i + 1

i
) (

j

i
)

∞

2i=j=0

∫ xr−3e
−(j+1)

ρ
x2

t

−∞

dx,  (21) 

Лr(t) = (1 − v) ∑ (i + 1)vi(−1)j(j + 1)
r

2⁄ −1 (
j

i
) ρ

r
2⁄

∞

2i=j=0

∫ z−r
2⁄ e−z

t

0

dz. (22) 
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  Finally, we obtain 

 

where γ(m, n) = ∫ yn−1e−ydy −
∞

0
∫ yn−1e−ydy = ∫ yn−1e−ydy

a

0

∞

m
 is the incomplete gamma function. The first 

incomplete moment is given as 

 

It should be noted that Eq. (24) is a very important quantity in deriving an expression for both the Lorenz 

and Bonferroni curves. 

3.1|Mean Deviation  

In this subsection, we derive an expression for the mean deviation about the mean and the mean deviation 

about the median. If X has the IRG distribution, then we can compute the mean deviations about the mean 

μ =  E(X) and the mean deviations about the median M as 

 

 

and 

 

respectively. the measures δ1(x) and δ2(x) can be estimated using the relationship q(. ) as 

 

3.2|Bonferroni and Lorenz Curves  

Measures of income inequality, such as the Lorenz and Bonferroni curves, are helpful in various domains 

such as insurance, demography, reliability, and medicine. The Lorenz curve for a positive random variable X 

is defined as 

 

 

And 

 

3.3|Residual Life and Reversed Residual Life Functions 

Assume that a part survives for a certain amount of time t >  0, the residual life is the period that exceeds t 

until the time when failure is observed and is defined by the conditional random variable X −  t|X >  t. In 

reliability theory, it has been established that the mean residual life function and the ratio of two consecutive 

moments of residual life can be used to determine the distribution uniquely. Therefore, we obtain the sth 

order moment of the residual life via the general formula given by 

Лr(t) = (1 − v) ∑ (i + 1)(−1)jvi(j + 1)
r

2⁄ −1 (
j

i
) ρ

r
2⁄ γ (1 − r

2⁄ , (j + 1)
ρ

t2
)

∞

i=j=0

, (23) 

Л1(t) = (1 − v) ∑ (i + 1)(−1)jvi(j + 1)−1
2⁄ (

j

i
) ρ

1
2⁄ Γ (1

2⁄ , (j + 1)
ρ

t2
)

∞

i=j=0

. (24) 

δ1(x) = ∫|x − μ|

∞

0

f(x)dx = 2[μf(μ) − q(μ)], (25) 

δ1(x) = ∫|x − M|

∞

0

f(x)dx = μ − 2Q(M), (26) 

q(v) = ∫ xf(x)dx

v

0

= (1 − v) ∑ (i + 1)(−1)jvi(j + 1)−1
2⁄ (

j

i
) ρ

1
2⁄ Γ (1

2⁄ , (j + 1)
ρ

v2
)

∞

i=j=0

.  

LT =
1

μ
∫ xf(x)dx

x

0

=
Л1(t)

μ
 =

(1 − v) ∑ (i + 1)(−1)jvi(j + 1)−1
2⁄ (j

i
)ρ

1
2⁄ Γ (1

2⁄ , (j + 1)
ρ
t2)∞

i=j=0

μ
.  (27) 

BT =
LT

t
=

(1 − v) ∑ (i + 1)(−1)jvi(j + 1)−1
2⁄ (j

i
)ρ

1
2⁄ Γ (1

2⁄ , (j + 1)
ρ
t2)∞

i=j=0

tμ
. (28) 
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Using the binomial expansion for (x − t)s and substituting f(x, ϕ) given by Eq. (3) into Eq. (29) finally gives 

 

Consequently, the sth moment of the residual life of X can be derived as 

 

The sth  moment of the reversed life of X 

 

 

3.4|Probability Weighted Moment 

The (r, s)th PWM OF x represented by X is statistically defined by  

 

Inserting Eq. (3) and Eq. (4) into Eq. (31), followed by further simplification using Eq. (10), we obtain 

 

By taking m = (s + q + 1)
ρ

x2 ,   x = m
−1

2⁄ (s + q + 1)
1

2⁄ ρ
1

2⁄ , and 

dx = −2
−1

2⁄ m
−3

2⁄ (s + q + 1)
1

2⁄ ρ
1

2⁄ dm, and substitute it in Eq. (32), we have  

 

Finally, we have an expression for the probability weighted moments as 

 

3.5|Stress-Strength Reliability 

Suppose a system has h components that are identical, of which j components are functioning. The strength 

of the h components is X1, with common CDF F(x; ρ, v1) while the stress Y2 imposed on the components has 

CDF F(x; ρ, v2). The strength Xi, i = 1,2, … , h and stress  Y2 are i. i. d. the reliability that the system functions 

properly is given by 

 

If X ~ IRG(ϕ), then 𝔎 is given by 

mrl(t) = E[(X − t)s X > t⁄ ] =
1

SIRG(t)
∫(x − t)sf(x)dx

t

0

. (29) 

mrl(t) =
(1 − v)

SIRG(t)
∑

(i + 1)(−1)s+j−ls! ts−lvi

l! Γ(s − l + 1)
(j + 1)

r
2

−1 (
j

i
) ρ

r
2γ (1 − r

2⁄ , (j + 1)
ρ

t2
)

∞

i=j=l=0

.  

MRL(t) = E[(t − X)s X > t⁄ ] =
1

FIRG(t)
∫(x − t)sf(x)dx

t

0

. (30) 

MRL(t) =
(1 − v)

FIRG(t)
∑

(i + 1)(−1)l+js! vi

l! Γ(s − l)!
(j + 1)

r
2

−1 (
j

i
) ρ

r
2γ (1 − r

2⁄ , (j + 1)
ρ

t2
)

∞

i=j=l=0

.  

μr,s = E{XrG(X)s} = ∫ xrG(X)s

∞

−∞

g(x)dx. (31) 

μr,s = 2ρ(1 − v) ∑ (−1)q (
s + p + 1

p
) (

q

p
) vp

∞

p=q=0

∫ x−3

∞

−∞

e
−(s+q+1)

ρ
x2dx,  (32) 

  μr,s = (1 − v) ∑ (−1)q (s+p+1
p

) (q
p

) vp∞
p=q=0 ρ

r
2⁄ (s + q + 1)(r

2⁄ −1) ∫ m−r
2⁄∞

−∞
e−mdm, (33) 

μr,s = (1 − v) ∑ (−1)q (
s + p + 1

p
) (

q

p
) vp

∞

p=q=0

ρ
r

2⁄ (s + q + 1)(r
2⁄ −1)Γ(1 − r

2⁄ ).  

𝔎 = P(Y2 < X1) = ∫ f1(x; ρ, v1)F2(x; ρ, v2)dx

∞

−∞

, (34) 
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3.6|Rényi and Tsallis Entropy  

Entropy measures the degree of variation in the level of uncertainty in a given system. Here, we consider the 

two essential types of entropy known as the Rényi and Tsallis entropies. The Rényi entropy measure of a 

random variable X with an IRG distribution can be defined by  

 

Plugging Eq. (3) in Eq. (35), we obtain 

 

Using the series expansion given in Eq. (10), we obtain 

 

where, Μl,k = (2ζ+k−1
k

)( l
k
)(−1)lvk(l + 1)

1−3ζ

2 Γ (1 +
3(ζ−1)

2
). 

 3.6.1|Tsallis entropy  

Tsallis entropy was developed by Tsallis [30], and its mathematical representation is given by  

 

 

Since, 

 

 

Therefore, 

 

 

3.7|Order Statistics 

Suppose X1, X2, X3 , X4, … , X5 represent an ordered random variable from the IRG distribution, then the PDF 

of the jth order statistic is given by  

 

 

Using Eq. (3) and Eq. (4), the maximum and the minimum order statistic of the IRG distribution are, 

respectively, given by 

𝔎 = (1 − v1) ∑ (i + 1) (
j

i
) (−1)j+l (

l

k
) v1

i v2
k(j + l + 1)−1

∞

i=j=k

. (34) 

Iζ(ϕ) =
1

1 − ζ
log [∫ f(x; ϕ)ζ

∞

0

dx] ,               ζ ≠ 1 and ζ > 0. (35) 

Iζ(ϕ) =
1

1 − ζ
log [∫ ((1 − v)

2ρ

x3
exp (−

ρ

x2
) [1 − v (1 − exp (−

ρ

x2
))]

−2

)

ζ∞

0

dx], (36) 

Iζ(ϕ) =
1

1 − ζ
log [(1 − v)ζ2ζ−1ρ

(1−ζ)
2 ∑ ∑ Μl,k

k

l=0

∞

k=0

], (37) 

IT
(ζ)

=
1

ζ − 1
[1 − ∫ gIRG(x)ζ

∞

0

] ,     ζ > 0, ζ ≠ 1. (38) 

∫ g(x)ζ

∞

0

= (1 − v)ζ2ζ−1ρ
(1−ζ)

2 ∑ ∑ Μl,k

k

l=0

∞

k=0

.  

IT
(ζ)

=
1

ζ − 1
[1 − (1 − v)ζ2ζ−1ρ

(1−ζ)
2 ∑ ∑ Μl,k

k

l=0

∞

k=0

]. (39) 

f(j,n)(x) =
n!

(j − 1)! (n − j)!
f(x)F(x)(j−1){1 − F(x)}n−j, (40) 
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and 

 

 

4|Maximum Likelihood Estimation of Inverse Rayleigh Geometric 

Model 

Let x1, x2, … , xn be a random sample of size n drawn from IRG(ϕ), let ϕ = (ρ, v)T represent the parameter 

vector. The likelihood function is defined  

 

The log likelihood function for the vector of parameters is given as 

The above log-likelihood expression in Eq. (44) can be maximized numerically by SAS or the Ox program, 

among many others. The associated score function is given by Un(ϕ)  = (
∂logL

∂ρ
,

∂logL

∂v
)T. 

The log-likelihood can be maximized by providing a numerical solution to the nonlinear likelihood equations 

obtained by differentiating Eq. (44). The components of the score vector are represented by  

 

The Maximum Likelihood Estimation (MLE) of ϕ, say ϕ̂, is obtained by proving a solution to the nonlinear 

system Un(ϕ) = 0. The solutions to these equations cannot be obtained analytically; nevertheless, they can be 

quantitatively solved using iterative techniques using statistical software. We need the information matrix for 

hypothesis testing on the model parameters and interval estimation. The three-by-three observed information 

matrix is provided by 

 

 

and Un(ϕ) = (
∂2logL

∂ϕ ∂ϕT). Using the large sample approximation, MLE of ϕ, i.e ϕ̂ can be approximated by 

N2(ϕ; Vn(ϕ)−1), where Vn(ϕ) = E[Un(ϕ)]. When certain requirements are met for parameters located within 

the parameter space but not on its boundary, the asymptotic distribution of √n(ϕ̂ − ϕ) is N2(ϕ; Vn(ϕ)−1), 

where V(ϕ) = lim
n→∞

n−1Un(ϕ) is taken to be the unit information matrix. This asymptotic tendency is true even 

f(n,n)(x) = n(1 − v)
2ρ

x3
exp (−

ρ

x2
) [1 − v (1 − exp (−

ρ

x2
))]

−2

× (
exp (−

ρ
x2)

[1 − v (1 − exp (−
ρ
x2))]

)

n−1

,  (41) 

f(1,n)(x) = n(1 − v)
2ρ

x3
exp (−

ρ

x2
) [1 − v (1 − exp (−

ρ

x2
))]

−2

× {1 −
exp (−

ρ
x2)

[1 − v (1 − exp (−
ρ
x2))]

}

n−1

.  (42) 

L = ∏ f(x; ρ, v),

n

i=1

 (43) 

log L = nlog(1 − v) + nlog(2ρ) − 3 ∑ log(xi)

n

i=1

− ρ ∑ xi
−2

n

i=1

− 2 ∑ [1 − v (1 − exp (−
ρ

xi
2

))]

n

i=1

. (44) 

∂logL

∂ρ
=

n

ρ
− ∑ xi

−2

n

i=1

+ 2v ∑
xi

−2e
(−

ρ
xi

2)

[1 − v (1 − e
(−

ρ
xi

2)
)]

n

i=1

.   (45) 

∂logL

∂v
= 2v ∑

(1 − e
(−

ρ
xi

2)
)

[1 − v (1 − e
(−

ρ
xi

2)
)]

n

i=1

−
n

1 − v
. (46) 

Un(ϕ) = − |
Uρρ Uρv

Uvρ Uvv
|.  
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  if V(ϕ) is substituted with the mean sample information matrix that is assessed at ϕ̂, say n−1Un(ϕ̂). The 

estimated asymptotic multivariate normal N2(ϕ; Vn(ϕ̂)−1) distribution of ϕ̂ can be utilized to construct 

approximate confidence intervals for the parameters of the distribution. A 100(1 − 𝜀) asymptotic confidence 

interval for each parameter ϕq is given by 

 

where Ûqq is the (q, q) diagonal element of Vn(ϕ̂)−1for q =  1, 2, and Zn
2⁄ is the quantile 1 − n

2⁄  of the 

standard normal distribution. 

5|Simulation Study 

Simulations were carried out to assess the effectiveness of the proposed method of MLE procedure in 

estimating the parameters of the IRG distribution. The random number generation for the study was 

performed based on 1000 samples of size 20, 50, 80, and 150, each of which was randomly sampled using the 

inversion method based on the QF given in Eq. (12). The process was repeated 1000 times to derive the 

following: 

 

 

These are given in Tables 4-6. We discover that the mean square error approaches zero as the sample size 

increases, as expected, which indicates that maximum likelihood performed consistently. 

Table 4. Estimates, squared error, and mean squared errors of inverse Rayleigh geometric distribution for 

maximum likelihood estimations by using different parameter values (𝛒 = 𝟎. 𝟓, 𝐯 = 𝟎. 𝟓). 

 

 

 

 

 

 

 

ACIq = (ϕ̂q − Zn
2⁄ √Ûqq, ϕ̂q + Zn

2⁄ √Ûqq).  

Absolute Bias (|AB|) =
1

M
∑ |ϕ̂i − ϕ|.

M

i=1

  

Mean Squared Error (MSE) =
1

M
∑(ϕ̂i − ϕ)

2
M

i=1

.  

n Parameter Mean (AB) SE MSE 

20 ρ 0.3811 0.1189 0.1467 0.0357 

v 0.7165 0.2165 0.2152 0.0932 

50 ρ 0.4092 0.0908 0.0790 0.0145 

v 0.3632 0.1368 0.2375 0.0751 

80 ρ 0.5316 0.0316 0.0973 0.0105 

v 0.4822 0.0178 0.1974 0.0393 

100 ρ 0.5284 0.0284 0.0869 0.0084 

v 0.4676 0.0324 0.1806 0.0337 

150 ρ 0.5392 0.0392 0.0693 0.0063 

v 0.5569 0.0569 0.1226 0.0183 
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  Table 5. Estimates, squared error, and mean squared errors of inverse Rayleigh geometric distribution 

for maximum likelihood estimations by using different parameter values (𝛒 = 𝟏. 𝟑, 𝐯 = 𝟎. 𝟓). 

 

 

 

 

 

 

 

 

 

Table 6. Estimates, squared error, and mean squared errors of inverse Rayleigh geometric distribution 

for maximum likelihood estimations by using different parameter values (𝛒 = 𝟎. 𝟓, 𝐯 = 𝟎. 𝟖). 

 

 

 

 

 

 

 

6|Applications of Inverse Rayleigh Geometric to Lifetime Data Sets 

In this section, we demonstrate three lifetime data applications of the proposed model in which two of the 

data sets follow a monotonic failure rate and one follows a non-monotonic failure rate, so as to achieve the 

primary objectives of extending the IR model. The performance of the models considered is judged using 

certain information criteria commonly used to evaluate the goodness of fit measures, which are Akaike 

Information Criterion (AICr), Bayesian Information Criterion (BICr), and Consistent Akaike Information 

Criterion (CAICr), Kolmogorov-Smirnov (KS), and the Probability Value (PV) are calculated to compare the 

fitted models. The model with the smallest values of these measures with the highest probability value is 

judged to be better than the others. These criteria are mathematically represented as follows: 

where, L = L(ϕ̂; zi) represent the Maximized Likelihood (ML) function and zi is the given random sample, ϕ̂ is 

the ML estimator and h is the number of parameter(s) in the model. 

The first data set consists of 63 observations of the strengths of 1.5 cm glass fibers obtained by workers at 

the UK National Physical Laboratory. The data have been previously analysed by Ogunde et al. [31], Reyad 

et al. [32] and Merovci et al. [33]. The summary statistics of the data are given in Table 7, which show that the 

data is negatively skewed, leptokurtic with excess Kurtosis of 0.9, and under-dispersed. The total time on test 

(TTT) plot, the Violin plot, and the Box plot are given in Fig. 6, which shows that the data is negatively skewed 

n Parameter Mean (AB) SE MSE 

20 ρ 1.2583 0.0417 0.3828 0.1483 

v 0.7197 0.2197 0.2132 0.0937 

50 ρ 1.5815 0.2815 0.3415 0.1959 

v 0.6059 0.1059 0.1874 0.0463 

80 ρ 1.3892 0.0892 0.2513 0.0711 

v 0.4891 0.0109 0.1923 0.0371 

100 ρ 1.3796 0.0796 0.2260 0.0574 

v 0.4718 0.0282 0.1789 0.0328 

150 ρ 1.3027 0.0027 0.1782 0.0318 

v 0.5102 0.0102 0.1200 0.0145 

𝐧 Parameter Mean (AB) SE MSE 

20 ρ 1.4156 0.0844 0.3603 0.1369 

v 0.8791 0.0791 0.0940 0.0151 

50 ρ 1.1964 0.3036 0.2345 0.1472 

v 0.7232 0.0768 0.1297 0.0440 

80 ρ 1.2939 0.2061 0.1951 0.0805 

v 0.7517 0.0483 0.0919 0.0108 

100 ρ 1.3580 0.1420 0.1821 0.0533 

v 0.7516 0.0484 0.0868 0.0099 

150 ρ 1.4449 0.0001 0.1534 0.0235 

v 0.7955 0.0045 0.0562 0.0032 

AICr = −2l + 2h,   AICr = AICr +
2h(h + 1)

n − h − 1
,  

CAICr = −2L + h{log(n) + 1},  

BICr = hlog(n) − 2L,         HQICr = −2L + 2hlog{log(n)},  
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  with an increasing failure rate. The MLEs' estimates of the parameters of the models considered are given in 

Table 8. 

Table 7. Summary statistics for the first data set.  

 

 

a. 

b. 

c. 

Fig. 7. a. Total time on test plot, b.Violin density for the first 

data, and c. Box plot for the first data. 

 

𝐪𝟏 𝐌𝐞𝐝𝐢𝐚𝐧 𝐌𝐞𝐚𝐧 𝐪𝟑 𝐑𝐚𝐧𝐠𝐞 𝐕𝐚𝐫𝐢𝐚𝐧𝐜𝐞 𝐊𝐮𝐫𝐭𝐨𝐬𝐢𝐬 𝐒𝐤𝐞𝐰𝐧𝐞𝐬𝐬 

1.38 1.59 1.51 1.69 1.69 0.11 3.92 -0.89 
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  Table 8. Maximum likelihood estimations, standard errors (in parentheses), and Goodness-of-fit statistics 

for the first data set. 

 

 

 

 

 

 

 

The IRG distribution is the best-fitted model among the other competing models considered in this study 

because the values of all criteria of goodness of fit are significantly smaller for the IRG distribution. The LR 

statistic was obtained for testing the hypotheses H0: v = 1 1versus H1 = H0 It is not true to compare the IR 

model with the IRG model. The LR statistic G =  2{−46.64 −  (−54.66)}  =  16.04 (p − value <  0.01), 

which is sufficient to show that the IRG model is a better model that can be used in fitting the data than the 

IR model. 

The second data set is from Bjerkedal [34] and represents the survival times, in days, of guinea pigs injected 

with different doses of tubercle bacilli. The data set consists of 72 observations. The data have been previously 

analysed by Ogunde and Adeniji [35]. The summary statistics of the data are given in Table 9, which show that 

the data is positively skewed, mesokurtic with excess Kurtosis of −1.2, and over-dispersed. The TTT plot, 

Violin plot, and the Box plot are given in Fig. 7, which shows that the data is positively skewed with a non-

monotonic failure rate. The MLEs' estimates of the parameters of the models considered are given in Table 

10. 

Table 9. Summary statistics for the second data set.  

 

 

 

a. 

 

 

Model Parameters  
Estimates 

Measures of Goodness of Fit 

 𝛒 𝐯 −𝐥 𝐀𝐈𝐂𝐫 𝐁𝐈𝐂𝐫 𝐂𝐀𝐈𝐂𝐫 𝐇𝐐𝐈𝐂𝐫 𝐊𝐒 𝐏𝐕 

GIRG 4.34 (0.78) 0.84 (0.07) 46.64 97.27 101.56 97.47 98.96 0.2294 0.0026 

IW 1.97 (0.24) 2.89 (0.23) 46.85 97.70 101.99 97.91 99.39 0.2434 0.0011 

IL 19.61 (14.15) 28.38 (20.56) 90.44 184.88 189.17 185.08 186.57 0.4932 9.8e-14 

L 14.07 (7.11) 21.42 (11.18) 90.91 185.81 190.10 186.01 187.50 0.4070 1.7e-09 

EIR 0.69 (5.96) 2.56 (21.92) 54.7 113.3 117.6 113.5 115.0 0.3472 5.01e-07 

IR 1.70 (0.23) - (-) 54.66 111.31 113.45 111.38 112.15 0.3472 5.1e-07 

𝐪𝟏 𝐌𝐞𝐝𝐢𝐚𝐧 𝐌𝐞𝐚𝐧 𝐪𝟑 𝐑𝐚𝐧𝐠𝐞 𝐕𝐚𝐫𝐢𝐚𝐧𝐜𝐞 𝐊𝐮𝐫𝐭𝐨𝐬𝐢𝐬 𝐒𝐤𝐞𝐰𝐧𝐞𝐬𝐬 
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b. 

c. 

Fig. 7. a. Total time on test plot, b. Violin density for the 

second data, and c. Box plot for the second data set. 

 

Table 10. Maximum likelihood estimations, standard errors (in parentheses), and Goodness-of-fit 

statistics for the second data set. 

 

 

 

 

 

 

 

The IRG distribution is the best-fitted model among the other competing models considered in this study 

because the values of all criteria of goodness of fit are significantly smaller for the IRG distribution. The 

LR statistic was obtained for testing the hypotheses H0: v = 1 versus H1 = H0 is not true that the IR model is 

Model Parameters 
Estimates 

Measures of Goodness of Fit 

 𝛒 v -l AICr BICr CAIC HQICr KS PV 

GIRG 58.62 (12.32) -57.53 (12.40) 395.69 795.38 799.93 795.55 797.19 0.2436 0.0004 

IW 20.84 (4.45) 0.78 (0.06) 414.89 833.77 838.32 833.94 835.58 0.1951 0.0083 

IL 0.09 (0.04) 6.51 (2.70) 405.20 814.38 818.94 814.56 816.20 0.2134 0.0028 

L 0.89 (0.15) 39.76 (8.81) 427.50 859.0 863.55 859.17 860.81 0.3397 1.21e-07 

EIR 50.35 (15.73) 43.42 (13.75) 406.7 817.5 822.0 817.7 819.3 0.2511 0.0002 

GIR 0.60 (0.08) 0.03 (0.01) 400.9 805.9 810.4 806.0 807.7 0.9999 2.2e-16 

IR 78.67 (9.27) - (-) 576.8 1155.5 1157.8 1155.6 1156.42 0.8566 2.2e-16 
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  compared with the IRG model. The LR statistic G =  2{−395.69 − (−576.80)} =  362.22 (p − value <

 0.01), which is sufficient to show that the IRG model is a better model that can be used in fitting the data 

than the IR model. 

a. 

b. 

Fig. 8. Fitted densities for the inverse Rayleigh geometric distribution; a. Estimated 

probability density functions first data, and b. Estimated probability density 

functions for the second data. 

 

7|Conclusion 

In this work, we have proposed and derived the properties and applications of the IRG distribution. The 

model extends the well-known IR distribution by the addition of one parameter. We derived an explicit 

mathematical expression for the moments, incomplete moments, MGF, weighted moment, stress-strength 

reliability, Bonferroni and Lorenz curves, mean deviations, residual life, reversed residual life functions, order 

statistics, Rényi, and Tsallis entropies. We estimated the model parameters using the method of maximum 

likelihood and determined their applicability using simulation studies. Finally, we fit the model to two lifetime 

data set to demonstrate its applicability and flexibility; the results demonstrate that the IRG model provides 

a better fit than some other popularly used reliability models as measured regarding the AICr, BICr, CAICr, 

KS, and PV, which is also adequately supported the fitted densities in Fig. 8. We hope that this distribution 

will attract wider applications in the areas of sciences and applied sciences 
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