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Abstract

Various limitations are inherent in existing statistical distributions, as explained in the literature when used in
modeling the complexities of real-world data. This oftentimes brings about the development of new tractable models.
This work introduces the new novel distribution named the Inverse Rayleigh Geometric IRG) distribution. The IRG
distribution boasts significant flexibility with symmetrical and asymmetrical shapes, allowing its Hazard Rate Function
(HRF) to be adapted to many failure patterns experienced in various fields such as medicine, biology, and engineering.
Some statistical properties of the IRG distribution, such as ordinary and incomplete moments, Quantile Function
(QF), stress-strength reliability, weighted moments, order statistics, information measures, and Rényi and Tsallis
entropies, are studied. A simulation study was carried out to evaluate the performance of the estimation method used.
The IRG distribution proves to be superior to all other models considered in this study by its ability to fit real-life
data accurately. Two medical and engineering datasets are applied to demonstrate the exceptional fit of the IRG
distribution compared to competing models. The results indicate that the IRG distribution holds promise for
reliability evaluations and lifetime data analysis in a variety of academic fields.

Keywords: Weighted moments, Stress-strength reliability, Tsallis entropy, Inverse Rayleigh distribution.

1| Introduction

Treyer 1] introduced and developed the Inverse Rayleigh (IR) distribution as a model for analyzing reliability
data. Voda [2] carried out an in-depth study on the model and discovered that the IR distribution is commonly
used in reliability research and engineering, and it can be used to approximate different experimental units of
lifespan distributions. Gharraph [3] derived five key measures of location for the IR distribution and used
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various estimation methods to estimate the unknown parameter of this distribution. Further, He performed
a numerical comparison of different estimating methods, concentrating on their bias and Root-Mean-Squared
Error (RMSE), in order to assess the effectiveness and suitability of the recommended approach. Mukherjee
and Maiti [4] proposed and studied the percentile estimator for the scale parameter A of the one-parameter
IR distribution and examined its asymptotic efficiency. In their study, Soliman et al. [5] examined both non-
Bayesian and Bayesian problems pertaining to parameter estimation in the IR model.

Almarashi et al. [6] addressed issues with the IR distribution's two-parameter extension by utilizing the half
logistic family to simulate somewhat positively-skewed or nearly symmetrical real-world data. The IR
probability distribution is offered by Chiodo and Noia [7] as an alternate distribution for simulating extremely
high wind speeds, which is essential for both mechanical safety evaluation and wind power generation.
Importantly for wind power generation and turbine safety assessment, Chiodo et al. [8] further introduced
the compound IR distribution as a model built for severe wind speeds. Bakoban and Al-Shehri [9] looked at
the four-parameter lifetime model known as the beta inverse generalized IR distribution. They conducted a
thorough analysis of the model's characteristics and applicability.

Further, several authors have also created and researched generalizations of the IR distribution with the goal
of expanding its range of use in real-world data modeling. Such works include: Khan [10] developed the
modified IR distribution and discussed its statistical properties. Khan and King [11] proposed and studied the
transmuted modified IR distribution utilizing the Quadratic Rank Transmutation Map (QRTM). The Burr
XII IR model was introduced by Goual and Yousof [12]. Fatima and Ahmad [13] developed the Weighted IR
distribution. They carried out a detailed study of its statistical properties, which immensely contributes to the
understanding and application of weighted distribution models in statistical analysis and applications.
Exponentiated IR distribution features were investigated by Rao and Mbwambo [14], providing a versatile
method for lifetime data analysis. The exponential transformed IR distribution was developed by Banerjee
and Bhunia [15].

The development of new distributions usually entails the addition of one or more parameters to baseline
distributions to enhance their applicability to model complex phenomena across various fields of life. Several
authors have been motivated by this technique and have proposed different methods for generating new
distributions. These include the Marshall and Olkin families of distribution developed by Marshall and Olkin
[16]. The Beta Generalized distribution proposed by Eugene et al. [17], the Kumaraswamy Generalized
distribution by Cordeiro and Castro [18], the McDonald Generalized distribution by Alexander et al. [19],
and Shaw and Buckley [20] developed the transmuted Generalized families of distributions. Type II Topp-
Leone generalized distribution was studied by Eligahy et al. [21], Alzaatreh and Ghosh [22] developed the
Weibull X generalized distributions, the odd-generalized exponential-G was proposed by Tahir et al. [23], and
Poisson odd-generalized exponential-G by Muhammad [24]. The Transmuted Generalized Poisson
distribution by Yousof et al. [25], Sin Kumaraswamy generalized distribution, and Sin Topp-Leone generalized
distribution were respectively studied by Jamal and Chesneau [26] and Al-Babtain et al [27] among several
others. This work focuses on extending the one-parameter IR distribution to address the problem of
monotone failure rate embedded in the IR distribution, which makes it inappropriate for use in modeling
real-life data with a non-monotone hazard failure rate due to a problem associated with its tail weight.

1.1| Motivation of Study

The chief motivation of this article is to develop a new generalization of the IR distribution called the Inverse
Rayleigh Geometric (IRG) distribution. The relevance of the IRG distribution and its desirable properties
include the following:

I. The density and Hazard Rate Functions (HRFs)' features and application of the IRG model will be enhanced,
which will also better represent the behavior of a number of real-world occurrences. There are other forms

that the HRF of the IRG distribution might take, such as increasing, decreasing, and inverted bathtub failure
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rate. The density can take symmetrical and asymmetrical shapes. This will enable the IRG model to fit a wide
range of data from the engineering, medicine, and reliability fields.

II. The IRG introduces new generalizations of the IR distribution by adding a new parameter, thus increasing its
flexibility and improving its ability to characterize tail shapes more accurately as observed from the different
shapes of the IRG density and hazard functions. Therefore, this generalization will help the IR's inability to
fit real-world data that possesses a non-monotone failure rate.

III. The Cumulative Distribution Function (CDF) and HRFs, moments, and entropy of the IRG are in closed
forms, which are helpful in analyzing complete and censored data.

The rest of the paper is organized as follows: we derived an expression for the distribution and density
functions, reliability properties, expansions of the Probability Density Function (PDF), Quantile Function
(QF), and mode, and also studied the nature of Skewness and Kurtosis of the new distribution in Section 2.
In Section 3, some statistical properties of the IRG distribution are examined. The maximum likelihood
method used in estimating the parameters of the IRG model in Section 4 is presented to estimate the model
parameters. A simulation study is performed in Section 5. In Section 6, we illustrate the flexibility of the new
model using two real data sets. Some concluding remarks are offered in Section 7.

2| Methodology

If there exists QQ functional component of a system working in series and operating independently from each

other. Suppose each component failure time is denoted by Zy, ....,Zq and the system stops functioning when
one of the components fails. Suppose the failure time of the components Z follows the IR distribution with
CDF represented by

p
G(x; p) = exp (_ X_z) ’ x>0;p>0. 1)

The associated PDF to Egq. (1) is

2p p
g(x; p) =X—3€Xp(—x—2), x> 0;p>0. (2)

And Q is a discrete random variable having a geometric distribution with probability function p(n; p) = (1 —
p)p™~?* for neN and pe(0,1). Let X = min{z;}};. The marginal PDF of X is

2p p NE
fx;p,v) =(1—v) X—gexp (— X—Z) [1 —-v (1 — exp (— X_Z))] . 3)
The corresponding CDF is
p
exp(—+5
F(x;p,v) = ( Xz) )

[1 —v (1 —exp (— X%))]

Where p is the scale parameter and v is a shape parameter. The functional reliability properties of the IRG
distribution are presented below. The Survival Function (SF), HRF, Cumulative Hazard Rate Function
(CHRF), and the Reversed Hazard Rate Function (RHRF) are given, respectively, by
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[1 —v (1 — exp (— X%))]

(1-v) Bexp (- &)[1- "<1 ~ew (- X%»]

sxp,v) =1-

-1

h(x;p,v) = 1—-v+ (v—1exp (_ x%)
o (1- v)%

s(x;p,v) = [1 ~ v(l — exp (— X%))]

And

H(x; p,v) = (— )%) + log [1 - v<1 — exp (— x%))]'

®)

©)

)

@®)

Figs. 1-5 show the variability in the shapes of the CDF, PDF, S(x), and h(x) for the IRG distribution. From Fig.
1, it can be concluded that the distribution function of the IRG function has a proper density function. Fig.
2 and Fig. 3 show that the PDF of the IRG distribution displays shapes with increasing, decreasing, and
unimodal patterns. From Fig 4, we observe that as time increases, the survival probability approaches zero,
that is, it decreases. Ijg. 5 demonstrates that the HRF of the IRG distribution showcases patterns marked

with increasing, decreasing, and inverted bathtub failure rate.
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Fig. 1. The cumulative distribution functions of the inverse Rayleigh geometric distribution.
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Fig. 2. The probability density functions of the inverse Rayleigh geometric distribution.
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Fig. 3. The probability density functions of the inverse Rayleigh geometric distribution; a. density
function of inverse Rayleigh geometric distribution, v=0.6 and b. density function of inverse
Rayleigh geometric distribution, v=0.2.
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Fig. 4. The survival function of inverse Rayleigh geometric distribution.
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h(x)
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Fig. 5. The hazard rate function of the inverse Rayleigh geometric distribution;
a. Hazard function of inverse Rayleigh geometric distribution, v=0.6 and b.
Hazard function of inverse Rayleigh geometric distribution, v=0.2.

2.1| Expansion of the Density Function

In this subsection, we can write the Generalized IR distribution as an infinite mixture of the IR distribution

If I m|] < 1,u > 0,and w > 0, we have the series representation

©))

[ee)]

e

And -
(1-m)! = i(‘l)i (f P 1) mi, (10)

-2
Expanding [1 —v (1 —exp (— X%))] using Eg. (9) and Egq. (10), finally, we have
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[oe]

f(x;p,v) = 2(1 —v)p Z vi(=1) <i -: 1) (]1) x~3e 0t = iyj £ (G + Dp), (11)

i=j=0
where,

n=2a-vn Y e (7))

i=j=0

And f(x; (j + 1)p) denotes the IR density function with parameter (j + 1)p. Thus, the IRG density function
can be written as an infinite linear combination of IR densities, and then some of its basic mathematical and
statistical properties can be derived from IR properties.

2.2| Quantile of Inverse Rayleigh Geometric Distribution

The inverse of the CDF in Eq. (4) gives the QF of the IRG distribution as

Qu) = [—%(log % )]_1/2, ue(0,1) . (12)

The expression given Eg. (712)is very useful to generate IRG random variates, which can easily be implemented
using software. In particular, an expression for the median (M) of X is Q (0.5) given by

M= Qs = [ o[22 @)

2.3 | Mode

For a continuous random variable with PDF f(x), the mode is defined as the value at which f(x) reaches its

maximum value. The mode of the inverse generalized Rayleigh distribution can be estimated by finding a

solution to the equation Z—z (log[f(x; p,v]) = 0.

p
9 3 2 4vexp (— =
= (oglfCx p,vD) = ==+ %+ -

X X 3 [1_v<1—exp(—x%)>]

2.4| Skewness and Kurtosis Based on the Quantile Function

Now we consider the analytical expression for Skewness and Kurtosis of the IRG distribution by using the
QF given in Eg. (13). Suppose Q) = Q(uw; ) with ue(0,1). Thus, we consider the Galton coefficient of
Skewness (SK) by Galton [28] and the coefficient of Kurtosis (KK) by Moors [29], respectively, designed
using the QF. The Galton’s Skewness and Moors’ Kurtosis are defined by

GSK =

Qs;, —2Qu, +Qu, MK — Q7 —Qs/ + Q3. — Quyp

Q= Qy, Qejy =Qz
respectively. Here, GSK measures the degree of asymmetry of the IRG distribution, and MK measures the
degree of its tail heaviness; as the value of MK increases, the tail of the IRG distribution becomes heavier.
Tables 1-3 displays some basic characteristics of the IRG model. From Table 1 and Table 2, it can be deduced
that increasing the values of the parameter p while keeping the value of parameter v constant will lead to an
increase in the values of the Lower quartile (Q1 /4> middle quartile (Q1 /2), and the upper quartile (Q3 /4) while
keeping the values of the Galton Skewness and Moors Kurtosis constant. Table 3 shows that varying the

values of parameters p and vV will cause the values of the Galton coefficient of Skewness and Moors coefficient

of Kurtosis to increase and decrease as the values become larger.



A new generalized inverse Rayleigh geometric distribution with simulation and ... 232

Table 1. Quartiles, Skewness of inverse Rayleigh geometric distribution for v = 0. 2.

Ql/4 Ql/2 Q3/4 Q1/8 Qs/8 QS/8 Q7/8 GSK MK

p=0.5 05665 0.7852 1.1981 0.4686  0.6664 0.9452 1.7445  0.3074 1.5784
p=15 09812 13601 20752 0.8116  1.1542 1.6372 3.0215 0.3074 1.5784
p =5 1.7914 24831 3.7888 1.4818 21078 29891 55164 0.3074 1.5784
p=10 25334 35116 53582 2.0955 29801 4.2272 7.8014 03074 1.5784
p =20 3.5827 49662 75776 296353 42145 5.9782 11.0330 0.3074 1.5784
p =30 4.3879 6.08 9.2807 3.6296  5.1617 7.3218 13.5126 0.3074 1.5784

Table 2. Quartiles, Skewness of inverse Rayleigh geometric distribution for v = 0.8.

Ql/4 Ql/2 Qs/4 Ql/8 Qs/8 Qs/8 Q7/8 GSK MK
p=0.5 0.4247 0.5282 0.7140 0.3735 0.4731 0.6006 0.9632 0.2839 1.5975
p=1.5 0.7355 0.9150 1.2367 0.6469 0.8195 10402 1.6682 0.2839 1.5975
p =5 1.3429 1.6705 2.2578 1.1812 1.4962 1.8991 3.0457 0.2839 1.5975
p=10 1.8991 23624 3.1930 1.6705 2.1159 2.6858 4.3073 0.2839 1.5975
p=20 2.6858 3.3410 4.5156 2.3624 29924 3.7983 6.0915 0.2839 1.5975
p=30 3.2894 4.0919 55305 2.8934 3.6649 4.6519 7.4605 0.2839 1.5675

Table 3. Quartiles, Skewness of inverse Rayleigh geometric distribution.

Ql/4 Ql/2 Q3/4 Ql/s Q3/8 QS/8 Q7/8 GSK MK
p=10 206115 3.6583 5.6336 2.1456 3.0891 4.4245 8.2388 0.3072 1.5742

v=0.1
p=15 39107 39107 58266 24306 3.3594 4.6519 8.3805  0.3004 1.5878
v=04
p=25 235843 47703 6.9957 3.0384 41291 5.6309 9.9738  0.3047 1.5928
v=20.5
p=30 237441 48936 7.0351 3.2065 4.2741 57220 99115 0.3015 1.5974
v=10.6
p=40 40843 52229 7.3166 3.5401 4.6123 06.0340 10.1343 0.2955 1.6003
v=0.7
p=>50 38158 45664 58394 3.4249 41727 5.0690 7.5067  0.2582 1.5742
v=209

3| Moments and Incomplete Moments of Inverse Rayleigh
Geometric Distribution

Theorem 1. Let X be a random variable following an IRG distribution with shape parameters v and p. The

th

r'™® moment about the origin of X, represented by E(X"), gives as:

B =pp = (1=v) Y (4 DEONG + D% () per(1 - /) <2 (14)
i=j=0
Proof:
E(XT) = f X ) dx = 2p Z Vi(=1)i(1 = v) (itl) (’1) f 3 0Dz gy (15)
0 2i=j=0 o

Lettingz = (j + 1) X%, x=2 Y2+ 1)/2p"2, dx = _1/2 2 2@+ 1) 2p'2, inserting it in Eg. (15), we obtain
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B == (1-v) Y G+ DV + D7 () [ 27he da (16)
2. (e
fo=(=v) Y G+ DEDVG+DT () ar(1-7),  r<2 (17)

i=j=0

where I'(m) = [[*u™ e "du is the complementary incomplete gamma function. The mean of IRG can be

obtained by substituting r = 1in Eg. (77), and is given as

mean = p=(1—v) Z G+ 1) (=i + 1)~ (’l) p'2r(1/,). (18)

i=j=0
The g™ central moment (My) and cumulants (£,) of X, ate respectively, given by

q-1

/\a -1,
M, = E(X - uq) = Z (p _ 1) #erlg-r,
p=0

and

q-1

! q - 1 !
/"’r = Hr — ( _ )’kruq—r
p—1

p=0

whete £, = 1.

Theorem 2. If X ~ IRG, then an expression for the Moment Generating Function (MGF) of X is given as

M, (t) = (1 —v) Z %(i + 1)(~Divi( + 1) 721 (11) p'/2r(1-1/,).

i=j=0
Proof: From the well-known definition of the MGF given by

r

2 o t
M, (t) = E(etX) = Z — f xTE(x)dx = Z L
r! r!
r=0 — 00

r=0

Substituting Eg. (717) in Eq. (19) for up, we obtain the MGF of the IRG distribution as

MO = (1-v) D G+ DEDVG+ D% () per( - 17y).

i=j=0
The r'h lower incomplete moments of X are defined by

t

J.(t) = f X'f(x; d) dx. (20)

Inserting Eg. (3) in Eq. (20), we obtain

t

JI.(t) = 2p 21Z.;vi(—l)"(l -v) (i J: 1) (i) _ [o x=3e 052 gy (1)

Lettingz = (j + 1) X%, x=2 Y2+ 1)/2p"2, dx = _1/2 2 2@+ 1) 2p'2, inserting it in Eq. (27), we obtain

t

B®=(1=v) Y G+ DV(1)G+ D7 (JI) o'/ f 226" dz. 2)

2i=j=0 0



A new generalized inverse Rayleigh geometric distribution with simulation and ... 234

Finally, we obtain

[ee)

. i r/_1()\ r . p
1 =1 =v) Y G+ DEDVG+ DT () 2y (1-1/5,G+ D S) @3)
i5j=0
where y(m, n) = fooo y"leVdy — fr: y"leVdy = foa y" te ¥dy is the incomplete gamma function. The first

incomplete moment is given as

1O =1-v) Y G+ DEDVG+ D)) pber (Yy, G+ D D) @4)

i=j=0
It should be noted that Eg. (24) is a very important quantity in deriving an expression for both the Lorenz
and Bonferroni curves.

3.1| Mean Deviation

In this subsection, we derive an expression for the mean deviation about the mean and the mean deviation
about the median. If X has the IRG distribution, then we can compute the mean deviations about the mean
p = E(X) and the mean deviations about the median M as

8,09 = [ Ix = ul (09dx = 2[ufw) - o], 25)
0

and

5,09 = [ b= MIfGodx = u - 200), (26)
0

respectively. the measures §;(x) and 8,(x) can be estimated using the relationship q(.) as

aw) = [xteax =1 -v) Y G+ DEOVG+ D ()pr (15, 6+ D)

0 i=j=0

3.2| Bonferroni and Lorenz Curves

Measures of income inequality, such as the Lorenz and Bonferroni curves, are helpful in various domains
such as insurance, demography, reliability, and medicine. The Lorenz curve for a positive random variable X
is defined as

i 1=V N2+ DD+ 1D)-Y2()pYr (1, G+ 1)L
LT:fo(x)def):( V) 200+ 1) )V(lu) (Qe'or (.G + D) o
0

And

N Gl Do DEVG+D72()p"2r (15, G+ D)
t tu '

3.3| Residual Life and Reversed Residual Life Functions

(28)

Assume that a part survives for a certain amount of time t > 0, the residual life is the period that exceeds t
until the time when failure is observed and is defined by the conditional random variable X — t[X > t. In
reliability theory, it has been established that the mean residual life function and the ratio of two consecutive
moments of residual life can be used to determine the distribution uniquely. Therefore, we obtain the s

order moment of the residual life via the general formula given by
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1
Sira(D

mrl(t) = E[X—-t)5/X > t] = f(x — t)5f(x)dx. (29)

0

Using the binomial expansion for (x — t)° and substituting f(x, ¢) given by Eg. (3) into Eg. (29) finally gives

A-v) & G+DEDH st gy L
Sira (1) . IT(s—1+1) G+D2" <1> p2y(1 —T/5,G+1) t_z)'
i=j=1=0

mrl(t) =

Consequently, the s moment of the residual life of X can be derived as

1
Firg ()

MRL(t) = E[(t — X)5/X > t] = f (x — £)5f(x)dx. (30)
0

The s moment of the reversed life of X

1-v) = G+ 1D(-1D)Hst v
Fira () o IT(s —D)!

MRL() = G+ 02 (erv(1-7/.G+ D).

3.4 | Probability Weighted Moment

The (r,s)™ PWM OF x represented by X is statistically defined by

[ee]

s = EXG0%) = [ X7600° gCdx. @31

—00

Inserting Fg. (3) and Eg. (4) into Eg. (37), followed by further simplification using Eg. (70), we obtain

- +p+1 o o
ws =20 -v) > D" 2T (T)we f )3 e GGGy (32)
p=q=0 p P -0
By takingm = (s + q + 1))%, X = m_l/z(s +q+ 1)1/2p1/2, and

dx = —272m" /2(s + q + 1) /2p'/2dm, and substitute it in Eg. (32), we have

s = (1= ) Biqoo(—1)9 (1) () wP p2(s + q + /27D [% m~/2 e ™dm, (33)

Finally, we have an expression for the probability weighted moments as

Mrs = (1 —V) i (-D1 (s e 1) (g) vPp'2(s + g+ /2700 (1= 1/,).

p=q=0 3
3.5 | Stress-Strength Reliability

Suppose a system has h components that are identical, of which j components are functioning. The strength
of the h components is X;, with common CDF F(x; p, v;) while the stress Y, imposed on the components has
CDF F(x; p,v,). The strength X;,i = 1,2, ..., h and stress Y, are i.i.d. the reliability that the system functions
propetly is given by

ﬁ = P(YZ < Xl) = f fl(X; P, Vl)FZ(X; P, Vz)dX, (34)

—00

If X ~ IRG(¢), then & is given by
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—(1=vy) Z G+ 1) ( )( 1)1+1( )vilvlz‘(j Fl+ 1)L (34)

i=j=k
3.6 | Rényi and Tsallis Entropy
Entropy measures the degree of variation in the level of uncertainty in a given system. Here, we consider the

two essential types of entropy known as the Rényi and Tsallis entropies. The Rényi entropy measure of a
random variable X with an IRG distribution can be defined by

I(d) = - Zlog f f(x; d))(dxl, {#1and {> 0. (35)
Lo
Plugging Eq. (3)in Eq. (35), we obtain
o z
1 p N E
I($p) = T _Zlog f 1 —v)—exp( )[1—v<1—exp (_x_2)>] dx|, (36)
0
Using the series expansion given in Eg. (70), we obtain
CRSRERT
(@) = pglog|(L- V20 Z ) D My, (37
k=01=0

where, My = (<) (H (-1l KQ+1) 2 ( @)
3.6.1| Tsallis entropy

Tsallis entropy was developed by Tsallis [30], and its mathematical representation is given by

1 [ee)
I = Z—_l[l - f gIRG(X)zl; (>0,0+1. (38)
0
Since,
fg(x)Z (1—v)%2%t —ZZMIk
0
Therefore,
D o k
19 = C_ 1—(1—v)b2s? —EZ el (39)
k=0 120

3.7 | Order Statistics

Suppose X1, X5, X3, Xy, ..., X5 represent an ordered random variable from the IRG distribution, then the PDF
of the j* order statistic is given by

n! . .
fime = mf(X)F(X)(]_l){l - F)}"7, (40)

Using Eg. (3) and Eg. (4), the maximum and the minimum order statistic of the IRG distribution are,
respectively, given by
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n-1

—2 _ P
f(n,n)(x) =n(l-v) i—gexp (— X%) [1 -V <1 — exp (— X%))] % €Xp ( XZ) ) (41)

[1 —v <1 —exp (— X%))]

and
n-1

Ll eeed)

fameo =0 = v)%exp (_ x%) [1 - (1 B (_ X%))] N [1 v (1 exp ( : )>]
Vit T CXxZ

4| Maximum Likelihood Estimation of Inverse Rayleigh Geometric
Model

. (42)

Let X4, Xy, ..., X, be a random sample of size n drawn from IRG(¢), let ¢ = (p,v)T represent the parameter
vector. The likelihood function is defined

L= f(x; p,v), (43)
Ll

The log likelihood function for the vector of parameters is given as

log L = nlog(1 — v) + nlog(2p) — 3 Z log(x;) — pz X2 —2 Z [1 - V(l — exp (— x%))] 44)

The above log-likelihood expression in Eg. (44) can be maximized numerically by SAS or the Ox program,

. L dlogL dlogL
among many others. The associated score function is given by U, (¢) = (a—pg’ a—f)T.

The log-likelihood can be maximized by providing a numerical solution to the nonlinear likelihood equations
obtained by differentiating Eg. (44). The components of the score vector are represented by

P
dlogl. n Z e, Z 2ol w7
= —— Xi \'"4

b p & L [1 j v<1 } e(_%>)]. (45)

o)
dlogL . (1 et X n

P - (46)

o i1 [1 - v(l - e(_%)>] tov

The Maximum Likelihood Estimation (MLE) of ¢, say , is obtained by proving a solution to the nonlinear

system U (¢) = 0. The solutions to these equations cannot be obtained analytically; nevertheless, they can be
quantitatively solved using iterative techniques using statistical software. We need the information matrix for
hypothesis testing on the model parameters and interval estimation. The three-by-three observed information
matrix is provided by

Uy U

Un(q)) = - va US\‘: .
2 ~
and U, (¢) = (:{;%f}). Using the large sample approximation, MLE of ¢, i.e ¢ can be approximated by

N, (d; Vo () ™), where V,,(d) = E[U,(d)]. When certain requirements are met for parameters located within

the parameter space but not on its boundary, the asymptotic distribution of \/H(a\) - cl)) is Ny(d; Vi (p)™D),

where V(¢) = lim n~*U,(¢) is taken to be the unit information matrix. This asymptotic tendency is true even
n—.oo
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if V(¢) is substituted with the mean sample information matrix that is assessed at , say n_lUn(cT)). The
estimated asymptotic multivariate normal N, (d); Vn(a))_l) distribution of ¢ can be utilized to construct
approximate confidence intervals for the parameters of the distribution. A 100(1 — &) asymptotic confidence

interval for each parameter g is given by

ACl, = <¢q —Zny, [Oqq, g + Zny, /qu).

where ﬁqq is the (q,q) diagonal element of V,($) *for q = 1,2, and Zn/zis the quantile 1 — n/z of the

standard normal distribution.
5|Simulation Study

Simulations were carried out to assess the effectiveness of the proposed method of MLE procedure in
estimating the parameters of the IRG distribution. The random number generation for the study was
performed based on 1000 samples of size 20, 50, 80, and 150, each of which was randomly sampled using the
inversion method based on the QF given in Eg. (72). The process was repeated 1000 times to derive the
following:

M
1 ~
Absolute Bias (JAB|) = Mz |p; — P].
im1

M
1 ~
Mean Squared Error (MSE) = MZ(d)i - CI))Z-
i=1

These are given in Tables 4-6. We discover that the mean square error approaches zero as the sample size
increases, as expected, which indicates that maximum likelihood performed consistently.

Table 4. Estimates, squared error, and mean squared errors of inverse Rayleigh geometric distribution for
maximum likelihood estimations by using different parameter values (p = 0.5, v=0.5).

n Parameter Mean (AB) SE MSE

20 p 0.3811 0.1189 0.1467 0.0357
v 0.7165 0.2165 0.2152  0.0932
50 p 0.4092  0.0908 0.0790 0.0145
\% 0.3632  0.1368 0.2375 0.0751
80 p 0.5316  0.0316 0.0973 0.0105
\% 0.4822 0.0178 0.1974 0.0393
100 p 0.5284 0.0284 0.0869 0.0084
\% 0.4676 0.0324 0.1806 0.0337
150 p 0.5392  0.0392 0.0693 0.0063
\% 0.5569  0.0569 0.1226  0.0183
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Table 5. Estimates, squared error, and mean squared errors of inverse Rayleigh geometric distribution
for maximum likelihood estimations by using different parameter values (p = 1.3, v =0.5).

n Parameter Mean (AB) SE MSE

20 p 1.2583 0.0417 0.3828 0.1483
\% 0.7197 0.2197 0.2132  0.0937
50 p 1.5815 0.2815 0.3415 0.1959
\% 0.6059 0.1059 0.1874 0.0463
80 p 1.3892  0.0892 0.2513 0.0711
\% 0.4891 0.0109 0.1923 0.0371
100 p 1.3796  0.0796 0.2260 0.0574
v 0.4718 0.0282 0.1789 0.0328
150 p 1.3027 0.0027 0.1782 0.0318
v 0.5102 0.0102 0.1200 0.0145

Table 6. Estimates, squared error, and mean squared errors of inverse Rayleigh geometric distribution
for maximum likelihood estimations by using different parameter values (p = 0.5,v = 0.8).

n Parameter Mean (AB) SE MSE

20 p 1.4156  0.0844 0.3603 0.1369
\% 0.8791 0.0791 0.0940 0.0151
50 p 1.1964 03036 0.2345 0.1472
v 0.7232  0.0768 0.1297  0.0440
80 p 1.2939  0.2061 0.1951 0.0805
v 0.7517 0.0483 0.0919 0.0108
100 p 1.3580 0.1420 0.1821 0.0533
\% 0.7516  0.0484 0.0868 0.0099
150 p 1.4449 0.0001 0.1534 0.0235
\4 0.7955 0.0045 0.0562 0.0032

6 | Applications of Inverse Rayleigh Geometric to Lifetime Data Sets

In this section, we demonstrate three lifetime data applications of the proposed model in which two of the
data sets follow a monotonic failure rate and one follows a non-monotonic failure rate, so as to achieve the
primary objectives of extending the IR model. The performance of the models considered is judged using
certain information criteria commonly used to evaluate the goodness of fit measures, which are Akaike
Information Criterion (AICr), Bayesian Information Criterion (BICr), and Consistent Akaike Information
Criterion (CAICr), Kolmogorov-Smirnov (KS), and the Probability Value (PV) are calculated to compare the
fitted models. The model with the smallest values of these measures with the highest probability value is
judged to be better than the others. These criteria are mathematically represented as follows:

2h(h + 1)
AICr = —21 4+ 2h, AICr = AlICr + T_h_1

CAICr = —2L + h{log(n) + 13},
BICr = hlog(n) — 2L, HQICr = —2L + 2hlog{log(n)},

where, L = L($; z) represent the Maximized Likelihood (ML) function and z; is the given random sample, ¢ is
the ML estimator and h is the number of parameter(s) in the model.

The first data set consists of 63 observations of the strengths of 1.5 cm glass fibers obtained by workers at
the UK National Physical Laboratory. The data have been previously analysed by Ogunde et al. [31], Reyad
et al. [32] and Merovci et al. [33]. The summary statistics of the data are given in Table 7, which show that the
data is negatively skewed, leptokurtic with excess Kurtosis of 0.9, and under-dispersed. The total time on test
(TTT) plot, the Violin plot, and the Box plot are given in Fig. 6, which shows that the data is negatively skewed
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with an increasing failure rate. The MLLEs' estimates of the parameters of the models considered are given in

Table 8.

Table 7. Summary statistics for the first data set.

q: Median Mean q3; Range Variance Kurtosis Skewness
1.38  1.59 1.51 1.69  1.69 0.11 3.92 -0.89

C.

Fig. 7. a. Total time on test plot, b.Violin density for the first
data, and c. Box plot for the first data.
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Table 8. Maximum likelihood estimations, standard errors (in parentheses), and Goodness-of-fit statistics
for the first data set.

Model Parameters Measures of Goodness of Fit

Estimates

1] \' -1 AICr BICr CAICr HQICr KS PV
GIRG  4.34 (0.78) 0.84 (0.07) 46.64 9727  101.56 97.47 98.96 0.2294  0.0026
W 1.97 (0.24) 2.89 (0.23) 46.85 97.70  101.99 9791 99.39 0.2434  0.0011
1L 19.61 (14.15)  28.38 (20.56) 90.44 184.88 189.17 185.08 186.57 0.4932 9.8¢-14
L 14.07 (7.11) 21.42 (11.18) 90.91 18581 190.10 186.01 18750 0.4070 1.7¢-09
EIR 0.69 (5.96) 2.56 (21.92) 54.7 1133  117.6 1135 115.0 0.3472  5.01e-07
IR 1.70 (0.23) -() 54.66 11131 11345 111.38 112.15 0.3472 5.1¢-07

The IRG distribution is the best-fitted model among the other competing models considered in this study
because the values of all criteria of goodness of fit are significantly smaller for the IRG distribution. The LR
statistic was obtained for testing the hypotheses Hy: v =1 Iversus H; = Hy It is not true to compare the IR
model with the IRG model. The LR statistic G = 2{—46.64 — (—54.66)} = 16.04 (p — value < 0.01),
which is sufficient to show that the IRG model is a better model that can be used in fitting the data than the
IR model.

The second data set is from Bjerkedal [34] and represents the survival times, in days, of guinea pigs injected
with different doses of tubercle bacilli. The data set consists of 72 observations. The data have been previously
analysed by Ogunde and Adeniji [35]. The summary statistics of the data are given in Table 9, which show that
the data is positively skewed, mesokurtic with excess Kurtosis of —1.2, and over-dispersed. The TTT plot,
Violin plot, and the Box plot are given in Fig. 7, which shows that the data is positively skewed with a non-
monotonic failure rate. The MLEs' estimates of the parameters of the models considered are given in Table
10.

Table 9. Summary statistics for the second data set.

q1 Median Mean q3 Range Variance Kurtosis Skewness
54.75 70 99.82 11275 364 6580.12 5.61 1.80

08

\
N

N
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300

200

100

Fig. 7. a. Total time on test plot, b. Violin density for the
second data, and c. Box plot for the second data set.

Table 10. Maximum likelihood estimations, standard etrors (in parentheses), and Goodness-of-fit
statistics for the second data set.

Model Parameters Measures of Goodness of Fit

Estimates

1] v -1 AICr BICr CAIC HQICr KS PV
GIRG  58.62 (12.32) -57.53 (12.40) 395.69 79538 799.93 79555 797.19  0.2436 0.0004
W 20.84 (4.45)  0.78 (0.006) 414.89 83377 83832 83394 835.58  0.1951 0.0083
1L 0.09 (0.04) 6.51 (2.70) 405.20 814.38 818.94 81456 816.20  0.2134 0.0028
L 0.89 (0.15) 39.76 (8.81) 427.50 859.0  863.55 859.17 860.81 0.3397 1.21e-07

EIR 50.35 (15.73)  43.42 (13.75) 4067  817.5 822.0 8177  819.3 0.2511  0.0002
GIR 0.60 (0.08) 0.03 (0.01) 400.9 8059 8104  806.0  807.7 0.9999  2.2e-16
IR 78.67 (9.27) - () 576.8 11555 1157.8 1155.6 1156.42 0.8566 2.2e-16

The IRG distribution is the best-fitted model among the other competing models considered in this study
because the values of all criteria of goodness of fit are significantly smaller for the IRG distribution. The
LR statistic was obtained for testing the hypotheses Hy: v = 1 versus H; = H is not true that the IR model is
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compared with the IRG model. The LR statistic G = 2{—395.69 — (—576.80)} = 362.22 (p — value <
0.01), which is sufficient to show that the IRG model is a better model that can be used in fitting the data
than the IR model.

E\_ - Ro
R

10

05

L
|
y
V;:
i

Estimated Pdfs for the second data

TS

0.008
I

0.006

0.004

0.002

0.000

Fig. 8. Fitted densities for the inverse Rayleigh geometric distribution; a. Estimated
probability density functions first data, and b. Estimated probability density
functions for the second data.

7| Conclusion

In this work, we have proposed and derived the properties and applications of the IRG distribution. The
model extends the well-known IR distribution by the addition of one parameter. We derived an explicit
mathematical expression for the moments, incomplete moments, MGF, weighted moment, stress-strength
reliability, Bonferroni and Lorenz curves, mean deviations, residual life, reversed residual life functions, order
statistics, Rényi, and Tsallis entropies. We estimated the model parameters using the method of maximum
likelihood and determined their applicability using simulation studies. Finally, we fit the model to two lifetime
data set to demonstrate its applicability and flexibility; the results demonstrate that the IRG model provides
a better fit than some other populatly used reliability models as measured regarding the AICr, BICr, CAICr,
KS, and PV, which is also adequately supported the fitted densities in Fig. §. We hope that this distribution
will attract wider applications in the areas of sciences and applied sciences
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